Journal articles on the topic 'Lax-Friedrichs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lax-Friedrichs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shampine, L. F. "Two-step Lax–Friedrichs method." Applied Mathematics Letters 18, no. 10 (October 2005): 1134–36. http://dx.doi.org/10.1016/j.aml.2004.11.007.
Full textYu, Simin. "A survey of numerical schemes for transportation equation." E3S Web of Conferences 308 (2021): 01020. http://dx.doi.org/10.1051/e3sconf/202130801020.
Full textBreuß, Michael. "The correct use of the Lax–Friedrichs method." ESAIM: Mathematical Modelling and Numerical Analysis 38, no. 3 (May 2004): 519–40. http://dx.doi.org/10.1051/m2an:2004027.
Full textBodnár, Tomáš, Philippe Fraunié, and Karel Kozel. "MODIFIED EQUATION FOR A CLASS OF EXPLICIT AND IMPLICIT SCHEMES SOLVING ONE-DIMENSIONAL ADVECTION PROBLEM." Acta Polytechnica 61, SI (February 10, 2021): 49–58. http://dx.doi.org/10.14311/ap.2021.61.0049.
Full textMarcati, Pierangelo, and Roberto Natalini. "Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 125, no. 1 (1995): 115–31. http://dx.doi.org/10.1017/s030821050003078x.
Full textDallakyan, Gurgen. "Numerical Simulations for Chemotaxis Models." Biomath Communications 6, no. 1 (May 11, 2019): 16. http://dx.doi.org/10.11145/bmc.2019.04.277.
Full textSoga, Kohei. "Stochastic and variational approach to the Lax-Friedrichs scheme." Mathematics of Computation 84, no. 292 (July 22, 2014): 629–51. http://dx.doi.org/10.1090/s0025-5718-2014-02863-9.
Full textKao, Chiu Yen, Stanley Osher, and Jianliang Qian. "Lax–Friedrichs sweeping scheme for static Hamilton–Jacobi equations." Journal of Computational Physics 196, no. 1 (May 2004): 367–91. http://dx.doi.org/10.1016/j.jcp.2003.11.007.
Full textJOVANOVIC, V. "Error Estimates For The Lax — Friedrichs Scheme For Balance Laws." Computational Methods in Applied Mathematics 8, no. 2 (2008): 130–42. http://dx.doi.org/10.2478/cmam-2008-0009.
Full textBaiti, Paolo, Alberto Bressan, and Helge Kristian Jenssen. "Instability of travelling wave profiles for the Lax-Friedrichs scheme." Discrete & Continuous Dynamical Systems - A 13, no. 4 (2005): 877–99. http://dx.doi.org/10.3934/dcds.2005.13.877.
Full textGodillon, Pauline. "Green's function pointwise estimates for the modified Lax–Friedrichs scheme." ESAIM: Mathematical Modelling and Numerical Analysis 37, no. 1 (January 2003): 1–39. http://dx.doi.org/10.1051/m2an:2003022.
Full textBoukadida, T., and A. Y. LeRoux. "A new version of the two-dimensional Lax-Friedrichs scheme." Mathematics of Computation 63, no. 208 (1994): 541. http://dx.doi.org/10.1090/s0025-5718-1994-1242059-3.
Full textZhu, Peng, and Shuzi Zhou. "Relaxation Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations." Numerical Algorithms 54, no. 3 (October 6, 2009): 325–42. http://dx.doi.org/10.1007/s11075-009-9337-5.
Full textDubey, Ritesh Kumar, and Biswarup Biswas. "An Analysis on Induced Numerical Oscillations by Lax-Friedrichs Scheme." Differential Equations and Dynamical Systems 25, no. 2 (July 18, 2016): 151–68. http://dx.doi.org/10.1007/s12591-016-0311-0.
Full textZolfaghary, Azizi, Mohammad Naghashzadegan, and Vahid Shokri. "The impact of the order of numerical schemes on slug flows modeling." Thermal Science 23, no. 6 Part B (2019): 3855–64. http://dx.doi.org/10.2298/tsci171009320z.
Full textGani, MO, MM Hossain, and LS Andallah. "A finite difference scheme for a fluid dynamic traffic flow model appended with two-point boundary condition." GANIT: Journal of Bangladesh Mathematical Society 31 (April 9, 2012): 43–52. http://dx.doi.org/10.3329/ganit.v31i0.10307.
Full textSharma, Deepika, and Kavita Goyal. "Wavelet optimized upwind conservative method for traffic flow problems." International Journal of Modern Physics C 31, no. 06 (June 2020): 2050086. http://dx.doi.org/10.1142/s0129183120500862.
Full textChen, Guiqiang. "CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III)." Acta Mathematica Scientia 6, no. 1 (January 1986): 75–120. http://dx.doi.org/10.1016/s0252-9602(18)30535-6.
Full textDing, Xiaxi, Guiqiang Chen, and Peizhu Luo. "CONVERGENCE OF THE LAX-FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (I)." Acta Mathematica Scientia 5, no. 4 (October 1985): 415–32. http://dx.doi.org/10.1016/s0252-9602(18)30542-3.
Full textDing, Xiaxi, Guiqiang Chen, and Peizhu Luo. "CONVERGENCE OF THE LAX-FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (II)." Acta Mathematica Scientia 5, no. 4 (October 1985): 433–72. http://dx.doi.org/10.1016/s0252-9602(18)30543-5.
Full textSoga, Kohei. "More on stochastic and variational approach to the Lax-Friedrichs scheme." Mathematics of Computation 85, no. 301 (February 10, 2016): 2161–93. http://dx.doi.org/10.1090/mcom/3061.
Full textKüther, Marc. "Error Estimates for the Staggered Lax--Friedrichs Scheme on Unstructured Grids." SIAM Journal on Numerical Analysis 39, no. 4 (January 2001): 1269–301. http://dx.doi.org/10.1137/s0036142900374275.
Full textChatterjee, N., and U. S. Fjordholm. "A convergent finite volume method for the Kuramoto equation and related nonlocal conservation laws." IMA Journal of Numerical Analysis 40, no. 1 (November 9, 2018): 405–21. http://dx.doi.org/10.1093/imanum/dry074.
Full textChiarello, Felisia Angela, and Paola Goatin. "Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 1 (January 2018): 163–80. http://dx.doi.org/10.1051/m2an/2017066.
Full textArry Sanjoyo, Bandung, Mochamad Hariadi, and Mauridhi Hery Purnomo. "Stable Algorithm Based On Lax-Friedrichs Scheme for Visual Simulation of Shallow Water." EMITTER International Journal of Engineering Technology 8, no. 1 (June 2, 2020): 19–34. http://dx.doi.org/10.24003/emitter.v8i1.479.
Full textFrid, Hermano. "Invariant regions under Lax-Friedrichs scheme for multidimensional systems of conservation laws." Discrete & Continuous Dynamical Systems - A 1, no. 4 (1995): 585–93. http://dx.doi.org/10.3934/dcds.1995.1.585.
Full textYang, Tong, and Huijiang Zhao †. "BV Estimates on Lax–Friedrichs' Scheme or a Model of Radiating Gas." Applicable Analysis 83, no. 5 (May 2004): 533–39. http://dx.doi.org/10.1080/00036810410001649674.
Full textZhang, Jing, and Changjiang Zhu. "BV-estimates of Lax-Friedrichs' scheme for hyperbolic conservation laws with relaxation." Mathematical Methods in the Applied Sciences 31, no. 8 (September 13, 2007): 959–74. http://dx.doi.org/10.1002/mma.954.
Full textRider, W. J., and R. B. Lowrie. "The use of classical Lax-Friedrichs Riemann solvers with discontinuous Galerkin methods." International Journal for Numerical Methods in Fluids 40, no. 3-4 (2002): 479–86. http://dx.doi.org/10.1002/fld.334.
Full textCHEN, GUI-QIANG, and ELEUTERIO F. TORO. "CENTERED DIFFERENCE SCHEMES FOR NONLINEAR HYPERBOLIC EQUATIONS." Journal of Hyperbolic Differential Equations 01, no. 03 (September 2004): 531–66. http://dx.doi.org/10.1142/s0219891604000202.
Full textLiska, Richard, Mikhail Shashkov, and Burton Wendroff. "The early influence of peter lax on computational hydrodynamics and an application of lax-friedrichs and lax-wendroff on triangular grids in lagrangian coordinates." Acta Mathematica Scientia 31, no. 6 (November 2011): 2195–202. http://dx.doi.org/10.1016/s0252-9602(11)60393-7.
Full textCoelho, R. M. L., P. L. C. Lage, and A. Silva Telles. "A comparison of hyperbolic solvers II: ausm-type and Hybrid Lax-Wendroff-Lax-Friedrichs methods for two-phase flows." Brazilian Journal of Chemical Engineering 27, no. 1 (March 2010): 153–71. http://dx.doi.org/10.1590/s0104-66322010000100014.
Full textAraujo, Isamara L. N., Panters Rodríguez-Bermúdez, and Yoisell Rodríguez-Núñez. "Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media." TEMA (São Carlos) 21, no. 1 (March 27, 2020): 21. http://dx.doi.org/10.5540/tema.2020.021.01.21.
Full textYun WU, and Haixin JIANG. "Local Oscillations in Generalized Lax-Friedrichs Schemes for Linear Advection Equation with Damping." Journal of Convergence Information Technology 7, no. 22 (December 31, 2012): 306–14. http://dx.doi.org/10.4156/jcit.vol7.issue22.36.
Full textCao, Wentao, Feimin Huang, and Dehua Wang. "Isometric Immersion of Surface with Negative Gauss Curvature and the Lax--Friedrichs Scheme." SIAM Journal on Mathematical Analysis 48, no. 3 (January 2016): 2227–49. http://dx.doi.org/10.1137/15m1041766.
Full textChen, Weitao, Ching-Shan Chou, and Chiu-Yen Kao. "Lax–Friedrichs fast sweeping methods for steady state problems for hyperbolic conservation laws." Journal of Computational Physics 234 (February 2013): 452–71. http://dx.doi.org/10.1016/j.jcp.2012.10.008.
Full textLi, Tian-Hong. "Convergence of the Lax–Friedrichs scheme for isothermal gas dynamics with semiconductor devices." Zeitschrift für angewandte Mathematik und Physik 57, no. 1 (November 2005): 12–32. http://dx.doi.org/10.1007/s00033-005-0001-1.
Full textBreuß, Michael. "About the Lax-Friedrichs scheme for the numerical approximation of hyperbolic conservation laws." PAMM 4, no. 1 (December 2004): 636–37. http://dx.doi.org/10.1002/pamm.200410299.
Full textRossi, Elena, Jennifer Weißen, Paola Goatin, and Simone Göttlich. "Well-posedness of a non-local model for material flow on conveyor belts." ESAIM: Mathematical Modelling and Numerical Analysis 54, no. 2 (March 2020): 679–704. http://dx.doi.org/10.1051/m2an/2019062.
Full textD. Towers, John. "The Lax-Friedrichs scheme for interaction between the inviscid Burgers equation and multiple particles." Networks & Heterogeneous Media 15, no. 1 (2020): 143–69. http://dx.doi.org/10.3934/nhm.2020007.
Full textKao, Chiu Yen, Carmeliza Navasca, and Stanley Osher. "The Lax–Friedrichs sweeping method for optimal control problems in continuous and hybrid dynamics." Nonlinear Analysis: Theory, Methods & Applications 63, no. 5-7 (November 2005): e1561-e1572. http://dx.doi.org/10.1016/j.na.2005.01.061.
Full textSetiyowati, R., and Sumardi. "A Simulation of Shallow Water Wave Equation Using Finite Volume Method: Lax-Friedrichs Scheme." Journal of Physics: Conference Series 1306 (August 2019): 012022. http://dx.doi.org/10.1088/1742-6596/1306/1/012022.
Full textLi, Jia, Dazhi Zhang, Xiong Meng, Boying Wu, and Qiang Zhang. "Discontinuous Galerkin Methods for Nonlinear Scalar Conservation Laws: Generalized Local Lax--Friedrichs Numerical Fluxes." SIAM Journal on Numerical Analysis 58, no. 1 (January 2020): 1–20. http://dx.doi.org/10.1137/19m1243798.
Full textWang, Dean, and Tseelmaa Byambaakhuu. "High-Order Lax-Friedrichs WENO Fast Sweeping Methods for the SN Neutron Transport Equation." Nuclear Science and Engineering 193, no. 9 (March 25, 2019): 982–90. http://dx.doi.org/10.1080/00295639.2019.1582316.
Full textYang, Tong, Huijiang Zhao, and Changjiang Zhu. "BV estimates of Lax-Friedrichs’ scheme for a class of nonlinear hyperbolic conservation laws." Proceedings of the American Mathematical Society 131, no. 4 (October 1, 2002): 1257–66. http://dx.doi.org/10.1090/s0002-9939-02-06688-1.
Full textChen, Weitao, Ching-Shan Chou, and Chiu-Yen Kao. "Lax–Friedrichs Multigrid Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws." Journal of Scientific Computing 64, no. 3 (March 18, 2015): 591–618. http://dx.doi.org/10.1007/s10915-015-0006-7.
Full textsun, Xia, Guodong Wang, and Yanying Ma. "A new modified Local Lax–Friedrichs scheme for scalar conservation laws with discontinuous flux." Applied Mathematics Letters 105 (July 2020): 106328. http://dx.doi.org/10.1016/j.aml.2020.106328.
Full textKabir, MH, and LS Andallah. "Numerical Solution of a Multilane Traffic Flow Model." GANIT: Journal of Bangladesh Mathematical Society 33 (January 13, 2014): 25–32. http://dx.doi.org/10.3329/ganit.v33i0.17653.
Full textVasquéz, Yolanda Maria, and Dr José Javier Laguardia. "Estudio del Flujo Vehicular Mediante un Modelo de Lighthill-Whitham-Richards." KnE Engineering 3, no. 1 (February 11, 2018): 449. http://dx.doi.org/10.18502/keg.v3i1.1449.
Full textPetaccia, Gabriella, Luigi Natale, Fabrizio Savi, Mirjana Velickovic, Yves Zech, and Sandra Soares-Frazão. "Flood wave propagation in steep mountain rivers." Journal of Hydroinformatics 15, no. 1 (July 12, 2012): 120–37. http://dx.doi.org/10.2166/hydro.2012.122.
Full text