Journal articles on the topic 'Lax-Wendroff scheme'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lax-Wendroff scheme.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nigar, Sultana Laek Sazzad Andallah. "Stability Analysis Of First And Second Order Explicit Finite Difference Scheme of Advection-Diffusion Equation." Multicultural Education 8, no. 2 (2022): 52. https://doi.org/10.5281/zenodo.5973240.
Full textLaek Sazzad Andallah, Nigar Sultana,. "Investigation of Water Pollution in the River with Second-Order Explicit Finite Difference Scheme of Advection-Diffusion Equation and First-Order Explicit Finite Difference Scheme of Advection-Diffusion Equation." Mathematical Statistician and Engineering Applications 71, no. 2 (2022): 12–27. http://dx.doi.org/10.17762/msea.v71i2.62.
Full textDong, Haoyu, Changna Lu, and Hongwei Yang. "The Finite Volume WENO with Lax–Wendroff Scheme for Nonlinear System of Euler Equations." Mathematics 6, no. 10 (2018): 211. http://dx.doi.org/10.3390/math6100211.
Full textLu, Changna, Luoyan Xie, and Hongwei Yang. "The Simple Finite Volume Lax-Wendroff Weighted Essentially Nonoscillatory Schemes for Shallow Water Equations with Bottom Topography." Mathematical Problems in Engineering 2018 (2018): 1–15. http://dx.doi.org/10.1155/2018/2652367.
Full textFadhli Ahmad, Mohammad, Mohd Sofiyan Suliman, and . "Deficiency of finite difference methods for capturing shock waves and wave propagation over uneven bottom seabed." International Journal of Engineering & Technology 7, no. 3.28 (2018): 97. http://dx.doi.org/10.14419/ijet.v7i3.28.20977.
Full textChen, Jing-Bo. "High-order time discretizations in seismic modeling." GEOPHYSICS 72, no. 5 (2007): SM115—SM122. http://dx.doi.org/10.1190/1.2750424.
Full textAppadu, A. R. "Numerical Solution of the 1D Advection-Diffusion Equation Using Standard and Nonstandard Finite Difference Schemes." Journal of Applied Mathematics 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/734374.
Full textRen, Zhiming, Qianzong Bao, and Bingluo Gu. "Time-dispersion correction for arbitrary even-order Lax-Wendroff methods and the application on full-waveform inversion." GEOPHYSICS 86, no. 5 (2021): T361—T375. http://dx.doi.org/10.1190/geo2020-0934.1.
Full textRahman, Md Mizanur, K. Hasan, Zhiqian Sang, and Zing Ni. "Lax-Wendroff method for incompressible flow." Journal of Physics: Conference Series 2313, no. 1 (2022): 012002. http://dx.doi.org/10.1088/1742-6596/2313/1/012002.
Full textBergmann, Tim, Joakim O. Blanch, Johan O. A. Robertsson, and Klaus Holliger. "A simplified Lax‐Wendroff correction for staggered‐grid FDTD modeling of electromagnetic wave propagation in frequency‐dependent media." GEOPHYSICS 64, no. 5 (1999): 1369–77. http://dx.doi.org/10.1190/1.1444642.
Full textJejeniwa, Olaoluwa Ayodeji, Hagos Hailu Gidey, and Appanah Rao Appadu. "Numerical Modeling of Pollutant Transport: Results and Optimal Parameters." Symmetry 14, no. 12 (2022): 2616. http://dx.doi.org/10.3390/sym14122616.
Full textGalaguz, Yuri P. "REALIZATION OF THE TVD-SCHEME FOR A NUMERICAL SOLUTION OF THE FILTRATION PROBLEM." International Journal for Computational Civil and Structural Engineering 13, no. 2 (2017): 93–102. http://dx.doi.org/10.22337/2587-9618-2017-13-2-93-102.
Full textSaxena, Parul, Vinay Saxena, and Raju Prasad. "Numerical Investigation of 1D Burgers' equation using Lax-Friedrichs and Lax-Wendroff schemes." Anthology The Research 8, no. 11 (2024): E 26 — E 35. https://doi.org/10.5281/zenodo.10907849.
Full textNikolopoulos, C. V. "Numerical Solution of a Nonlocal Problem Modelling Ohmic Heating of Foods." Computational Methods in Applied Mathematics 9, no. 4 (2009): 391–411. http://dx.doi.org/10.2478/cmam-2009-0025.
Full textFRICKE, J. ROBERT. "QUASI-LINEAR ELASTODYNAMIC EQUATIONS FOR FINITE DIFFERENCE SOLUTIONS IN DISCONTINUOUS MEDIA." Journal of Computational Acoustics 01, no. 03 (1993): 303–20. http://dx.doi.org/10.1142/s0218396x93000160.
Full textSharma, Deepika, and Kavita Goyal. "Wavelet optimized upwind conservative method for traffic flow problems." International Journal of Modern Physics C 31, no. 06 (2020): 2050086. http://dx.doi.org/10.1142/s0129183120500862.
Full textAmundsen, Lasse, and Ørjan Pedersen. "Time step n-tupling for wave equations." GEOPHYSICS 82, no. 6 (2017): T249—T254. http://dx.doi.org/10.1190/geo2017-0377.1.
Full textSantosa, Fadil, and Yih‐Hsing Pao. "Accuracy of a Lax–Wendroff scheme for the wave equation." Journal of the Acoustical Society of America 80, no. 5 (1986): 1429–37. http://dx.doi.org/10.1121/1.394398.
Full textFridrich, David, Richard Liska, Ivan Tarant, Pavel Váchal, and Burton Wendroff. "CELL-CENTERED LAGRANGIAN LAX-WENDROFF HLL HYBRID SCHEME ON UNSTRUCTURED MESHES." Acta Polytechnica 61, SI (2021): 68–76. http://dx.doi.org/10.14311/ap.2021.61.0068.
Full textPotapov, I. I., and P. S. Timosh. "ON THE USE OF THE CENTRAL DIFFERENCE SCHEME FOR SOLVING THE PROBLEM OF GAS DYNAMICS." Informatika i sistemy upravleniya, no. 2 (2021): 17–22. http://dx.doi.org/10.22250/isu.2021.68.17-22.
Full textFridrich, David, Richard Liska, and Burton Wendroff. "Cell-centered Lagrangian Lax-Wendroff HLL hybrid scheme in cylindrical geometry." Journal of Computational Physics 417 (September 2020): 109605. http://dx.doi.org/10.1016/j.jcp.2020.109605.
Full textCollins, J. B., Don Estep, and Simon Tavener. "A posteriori error estimation for the Lax–Wendroff finite difference scheme." Journal of Computational and Applied Mathematics 263 (June 2014): 299–311. http://dx.doi.org/10.1016/j.cam.2013.12.035.
Full textBenoit, Antoine, and Jean-François Coulombel. "The Neumann boundary condition for the two-dimensional Lax–Wendroff scheme." Communications in Mathematical Sciences 21, no. 8 (2023): 2051–82. http://dx.doi.org/10.4310/cms.2023.v21.n8.a1.
Full textPei, Yanrong, Haifang Jian, and Wenchang Li. "An Improved Lax-Wendroff Scheme for Two-Dimensional Transient Thermal Simulation." Applied Sciences 13, no. 21 (2023): 11713. http://dx.doi.org/10.3390/app132111713.
Full textDing, Lijuan. "Accuracy of Lax-Wendroff scheme for discontinuous solutions of convection equations." Chinese Science Bulletin 42, no. 24 (1997): 2047–51. http://dx.doi.org/10.1007/bf02882942.
Full textPeng, Shuang, Songze Chen, Hong Liang, and Chuang Zhang. "Semi-implicit Lax-Wendroff kinetic scheme for multi-scale phonon transport." Computers & Mathematics with Applications 187 (June 2025): 72–84. https://doi.org/10.1016/j.camwa.2025.03.019.
Full textЧижонков, Е. В. "On second-order accuracy schemes for modeling of plasma oscillations." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 1 (January 13, 2020): 115–28. http://dx.doi.org/10.26089/nummet.v21r110.
Full textMachalinska-Murawska, Justyna, and Michał Szydłowski. "Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow." Archives of Hydro-Engineering and Environmental Mechanics 60, no. 1-4 (2014): 51–62. http://dx.doi.org/10.2478/heem-2013-0008.
Full textFeng, Renzhong, and Zheng Wang. "Simple and High-Accurate Schemes for Hyperbolic Conservation Laws." Journal of Applied Mathematics 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/275425.
Full textZhang, Yuangao, and Behrouz Tabarrok. "Modifications to the Lax?Wendroff scheme for hyperbolic systems with source terms." International Journal for Numerical Methods in Engineering 44, no. 1 (1999): 27–40. http://dx.doi.org/10.1002/(sici)1097-0207(19990110)44:1<27::aid-nme485>3.0.co;2-0.
Full textAbedian, Rooholah. "High-Order Semi-Discrete Central-Upwind Schemes with Lax–Wendroff-Type Time Discretizations for Hamilton–Jacobi Equations." Computational Methods in Applied Mathematics 18, no. 4 (2018): 559–80. http://dx.doi.org/10.1515/cmam-2017-0031.
Full textZendrato, Nur Lely Hardianti, Asrini Chrysanti, Bagus Pramono Yakti, Mohammad Bagus Adityawan, Widyaningtias, and Yadi Suryadi. "Application of Finite Difference Schemes to 1D St. Venant for Simulating Weir Overflow." MATEC Web of Conferences 147 (2018): 03011. http://dx.doi.org/10.1051/matecconf/201814703011.
Full textOGATA, YOUICHI, TAKASHI YABE, KAZUNARI SHIBATA, and TAKAHIRO KUDOH. "EFFICIENT COMPUTATION OF MAGNETO-HYDRODYNAMIC PHENOMENA IN ASTROPHYSICS BY CCUP-MOCCT METHOD." International Journal of Computational Methods 01, no. 01 (2004): 201–25. http://dx.doi.org/10.1142/s021987620400006x.
Full textMartínez-Aranda, S., A. Ramos-Pérez, and P. García-Navarro. "A 1D shallow-flow model for two-layer flows based on FORCE scheme with wet–dry treatment." Journal of Hydroinformatics 22, no. 5 (2020): 1015–37. http://dx.doi.org/10.2166/hydro.2020.002.
Full textAli, Ali Hasan, Ahmed Shawki Jaber, Mustafa T. Yaseen, Mohammed Rasheed, Omer Bazighifan, and Taher A. Nofal. "A Comparison of Finite Difference and Finite Volume Methods with Numerical Simulations: Burgers Equation Model." Complexity 2022 (June 27, 2022): 1–9. http://dx.doi.org/10.1155/2022/9367638.
Full textBOUSHABA, FARID, ELMILOUD CHAABELASRI, NAJIM SALHI, IMAD ELMAHI, FAYSSAL BENKHALDOUN, and ALISTAIR G. L. BORTHWICK. "A COMPARATIVE STUDY OF FINITE VOLUME AND FINITE ELEMENT ON SOME TRANSCRITICAL FREE SURFACE FLOW PROBLEMS." International Journal of Computational Methods 05, no. 03 (2008): 413–31. http://dx.doi.org/10.1142/s0219876208001522.
Full textMustafa, Muhammad I., Salim A. Messaoudi, and Mostafa Zahri. "Theoretical and computational results of a wave equation with variable exponent and time-dependent nonlinear damping." Arabian Journal of Mathematics 10, no. 2 (2021): 443–58. http://dx.doi.org/10.1007/s40065-021-00312-6.
Full textKoroche, Kedir Aliyi. "Numerical Solution of In-Viscid Burger Equation in the Application of Physical Phenomena: The Comparison between Three Numerical Methods." International Journal of Mathematics and Mathematical Sciences 2022 (March 29, 2022): 1–11. http://dx.doi.org/10.1155/2022/8613490.
Full textLee, Wonwoong, Jae Jun Lee, and Jeong Ik Lee. "Analysis of nodalization uncertainty for nuclear system analysis code with Lax-Wendroff numerical scheme." Annals of Nuclear Energy 167 (March 2022): 108853. http://dx.doi.org/10.1016/j.anucene.2021.108853.
Full textVafidis, A., F. Abramovici, and E. R. Kanasewich. "Elastic wave propagation using fully vectorized high order finite‐difference algorithms." GEOPHYSICS 57, no. 2 (1992): 218–32. http://dx.doi.org/10.1190/1.1443235.
Full textИванов, Д. В., Г. М. Кобельков, М. А. Ложников, and А. Ф. Харисов. "A method of adaptive artificial viscosity for solving numerically the equations of a viscous heat-conducting compressible gas." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 1(55) (March 13, 2018): 51–62. http://dx.doi.org/10.26089/nummet.v19r105.
Full textKarakozova, Anastasia, and Sergey Kuznetsov. "Oscillating Nonlinear Acoustic Waves in a Mooney–Rivlin Rod." Applied Sciences 13, no. 18 (2023): 10037. http://dx.doi.org/10.3390/app131810037.
Full textZhai, Qinglan, Song Zheng, and Lin Zheng. "A kinetic theory based thermal lattice Boltzmann equation model." International Journal of Modern Physics C 28, no. 04 (2017): 1750047. http://dx.doi.org/10.1142/s0129183117500474.
Full textKuznetsov, Sergey V. "Shock Wave Formation and Cloaking in Hyperelastic Rods." Applied Sciences 13, no. 8 (2023): 4740. http://dx.doi.org/10.3390/app13084740.
Full textCichy, D. M., B. Fikus, and R. K. Trębiński. "Comparison of Computational Methods and Approaches Applied in Formulation of Boundary Conditions in Lagrange’s Ballistic Problem." Journal of Physics: Conference Series 2701, no. 1 (2024): 012132. http://dx.doi.org/10.1088/1742-6596/2701/1/012132.
Full textIwamoto, J. "Impingement of Under-Expanded Jets on a Flat Plate." Journal of Fluids Engineering 112, no. 2 (1990): 179–84. http://dx.doi.org/10.1115/1.2909385.
Full textKim, Hongjoong. "An efficient computational method for statistical moments of Burger's equation with random initial conditions." Mathematical Problems in Engineering 2006 (2006): 1–21. http://dx.doi.org/10.1155/mpe/2006/17406.
Full textHao, Tianchu, Yaming Chen, Lingyan Tang, and Songhe Song. "A third-order weighted nonlinear scheme for hyperbolic conservation laws with inverse Lax-Wendroff boundary treatment." Applied Mathematics and Computation 441 (March 2023): 127697. http://dx.doi.org/10.1016/j.amc.2022.127697.
Full textMUKHOPADHYAY, P. S., G. K. MANDAL, G. K. SEN, and D. K. SINHA. "A simple model to study wave-surge interaction." MAUSAM 48, no. 2 (2021): 323–28. http://dx.doi.org/10.54302/mausam.v48i2.4014.
Full textShermukhamedov, Abdulaziz, Nurillo Ergashev, and Abdukhamid Azizov. "Substantiating parameters brake system of the tractor trailer." E3S Web of Conferences 264 (2021): 04019. http://dx.doi.org/10.1051/e3sconf/202126404019.
Full text