Dissertations / Theses on the topic 'Layer 5 pyramidal neuron'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Layer 5 pyramidal neuron.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kaufmann, Timothy J. "The electrophysiological impact of oligomeric alpha-Synuclein on thick-tufted layer 5 pyramidal neurons in the neocortex of mice." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77758/.
Full textKerr, Michael I. "The role of adenosine in the modulation of synaptic transmission and action potential firing of thick-tufted layer 5 pyramidal neurons." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57669/.
Full textBenhassine, Narimane. "Biophysical properties, distribution and functional importance of large-conductance Calcium-dependent Potassium channels in layer 5 pyramidal neurons of the rat somatosensory cortex /." [S.l.] : [s.n.], 2005. http://www.zb.unibe.ch/download/eldiss/05benhassine_n.pdf.
Full textSharifullina, Elvira [Verfasser], Arthur [Akademischer Betreuer] Konnerth, Thomas [Akademischer Betreuer] Misgeld, and Jana Eveline [Akademischer Betreuer] Hartmann. "Structure and function studies in layer 5 pyramidal neurons of the mouse vibrissal cortex / Elvira Sharifullina. Gutachter: Thomas Misgeld ; Arthur Konnerth ; Jana Eveline Hartmann. Betreuer: Arthur Konnerth." München : Universitätsbibliothek der TU München, 2011. http://d-nb.info/1056936584/34.
Full textShin, Jiyun. "Perirhinal feedback input controls neocortical memory formation via layer 1." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22312.
Full textDeclarative memory relies on interactions between the medial temporal lobe (MTL) and neocortex. However, due the distributed nature of neocortical networks, cellular targets and mechanisms of memory formation in the neocortex remain elusive. In the six-layered mammalian neocortex, top-down inputs converge on its outermost layer, layer 1 (L1). We examined how layer-specific top-down inputs from MTL modulate neocortical activity during memory formation. We first adapted a cortical- and hippocampal-dependent learning paradigm, in which animals learned to associate direct cortical microstimulation and reward, and characterized the learning behavior of rats and mice. We next showed that neurons in the deep layers of the perirhinal cortex not only provide monosynaptic inputs to L1 of the primary somatosensory cortex (S1), where microstimulation was presented, but also actively reflect the behavioral outcome. Chemogenetic suppression of perirhinal inputs to L1 of S1 disrupted early memory formation but did not affect animals’ performance after learning. The learning was followed by an emergence of a distinct subpopulation of layer 5 (L5) pyramidal neurons characterized by high-frequency burst firing, which could be reduced by blocking perirhinal inputs to L1. Interestingly, a similar proportion of apical dendrites (~10%) of L5 pyramidal neurons also displayed significantly enhanced calcium (Ca2+) activity during memory retrieval in expert animals. Importantly, disrupting dendritic Ca2+ activity impaired learning, suggesting that apical dendrites of L5 pyramidal neurons have a critical role in neocortical memory formation. Taken together, these results suggest that MTL inputs control learning via a perirhinal-mediated gating process in L1, manifested by elevated dendritic Ca2+ activity and burst firing in L5 pyramidal neurons. The present study provides insights into cellular mechanisms of learning and memory representations in the neocortex.
Voelker, Courtney Christine Joan. "Differential gene expression of cortical layer V pyramidal neuron subpopulations during development." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436930.
Full textFrackowiak, Stephanie. "Dendritic propagation of excitatory post-synaptic potentials in rat layer 5 pyramidal neurones." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393445.
Full textFarinella, M. "Synaptic integration in layer 5 cortical pyramidal cells and the role of background synaptic input explored with compartmental modeling." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1397661/.
Full textHolland, Carl Seiler. "Electrophysiological properties of layer 5 pyramidal neurons in a mouse model of autism spectrum disorder." Thesis, 2016. https://hdl.handle.net/2144/17017.
Full textChang, Ting-Hsuan Daniel, and 張珽瑄. "Comparison of Transmission at Synapses of Layers 2/3 Input onto Layer 5 Pyramidal and GABAergic Neurons in Rostral Agranular Insular Cortex." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/93585570272002491439.
Full text國立臺灣大學
生命科學系
104
It has been shown that inhibition or lesion of the rostral agranular insular cortex (RAIC) results in analgesia, it suggests that RAIC tonically produces hyperalgesia signal. RAIC is a cortical area where nociceptive output originates, and it has been reported to activate in chronic pain perception. It’s believed that chronic pain is associated with the long-term change in synaptic plasticity. Moreover, the imbalance of excitatory and inhibitory (E/I) synaptic signaling in neural circuits is responsible to modulate synaptic plasticity in certain behavior disorders. In our lab, previous study had reported that the induction of chronic pain induced differential activation in pyramidal cells and GABAergic neurons in RAIC. We propose here that E/I imbalance in RAIC may contribute to the increased cortical output of nociceptive signal in chronic pain. To test this possibility, we compared synaptic transmission of layers 2/3 (L2/3) inputs onto layer 5 (L5) pyramidal cells (PC), which are the descending projection neurons, and onto local GABAergic interneurons (IntN) in RAIC. We performed dual-patch recording from a paired IntN-PC in layer 5, and elicited EPSC by putting an electrode in layer 2/3. We found functional connectivity in 34.2% of all recorded IntN-PC pairs. There was no significant difference in data sampled from IntN-PC pairs with and without functional connectivity, and all data were pooled. Our data showed no significant difference in paring-pulse ratio between transmission at L2/3-PC synapses and at L2/3-IntN synapses. L2/3-IntN seemed to have higher releasing probability than L2/3-PC synapse in quantum study. The ratio of NMDA and non-NMDA EPSCs component was larger at L2/3-PC synapses than at L2/3-IntN synapses. Furthermore, the rising and decay of EPSCs were much faster at L2/3-IntN synapse than at L2/3-PC synapse. We further examined the modulation of pERK on IntN-PC pairs by applying PKC activator Phorbol 12,13- diacetate (PDA). PDA enhanced the postsynaptic currents at L2/3-PC synapses and L2/3- IntN synapses. The further issue of chronic pain model is under studying.
Lin, Bei-Xuan, and 林蓓萱. "Synaptic Transmission of GABAergic Interneurons on Layer 5 Pyramidal Neurons in the Rostral Agranular Insular Cortex of Control and Muscle Pain Mice." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/45mghz.
Full text國立臺灣大學
生命科學系
105
It has been well demonstrated that the change of synaptic efficacy in neurocircuit of brain pain matrix is a cellular substrate for behavior hypersensitivity in animals with chronic pain. While most of previous studies focus on transmission at synapses between nociceptive inputs and principal neurons, the role of local GABAergic interneurons (IntNs) receives less attention. I address this issue by using the acid-induced muscle pain animal model (AIMP model) in mice and focusing on the rostral agranular insular cortex (RAIC). The RAIC is an important component of brain pain matrix as this cortical area is shown to tonically produce hyperalgesia signal and is a cortical area where nociceptive output originates. We propose that repeated acid saline injection may trigger a plastic change in synaptic efficacy of GABAergic IntNs onto pyramidal neurons (PNs) and cause an excitatory/inhibitory imbalance in neurocircuit in RAIC, which in turn alters cortical output of nociceptive signal in chronic pain. To test this possibility, dual-patch recording from a pair of IntN-PN in layer 5 was initially used to record unitary inhibitory postsynaptic current (IPSC) in previous experiments of our lab, and found that only 30% of all recorded IntN-PN pairs showed functional connectivity. To increase successful rate, here I employ optogenetic method to selectively active GABAergic IntNs. I injected a cre-dependent AAV that carries eYFP and channelrhodopsin2 sequences into RAIC in transgenic mice, in which the promoter of vesicular-GABA-transporter controls expression of cre recombinase. The animals were killed 2-3 weeks after AAV injection for brain slice preparation and whole-cell patch recording was made from PNs. Illuminating the slice with a single blue-light pulse (2 ms) evoked inhibitory postsynaptic current (IPSC) in PNs that was blocked by 20 uM bicuculline, a GABAA receptor antagonist. The paired-pulse ratio of the IPSC significantly reduced from 0.66 ± 0.10 (n = 13) in control mice to 0.37 ± 0.03 (n = 12) in muscle pain mice (P < 0.05; Mann-Whitney Test); the quantal size of the IPSC was significantly increased from 12.88 ± 1.22 pA (n = 13) in control mice to 18.82 ± 1.91 (n = 12) pA in muscle pain mice (P < 0.05; Mann-Whitney Test). These results show potential changes in synaptic function of GABAergic IntNs onto PNs in RAIC in chronic pain condition.
Wang, Jingyi. "Detailed morphological study of layer 2 and layer 3 pyramidal neurons in the anterior cingulate cortex of the rhesus monkey." Thesis, 2014. https://hdl.handle.net/2144/14689.
Full textDyhrfjeld-Johnsen, Jonas [Verfasser]. "Investigations of microcircuitry in the rat barrel cortex using an experimentally constrained layer V pyramidal neuron model / vorgelegt von Jonas Dyhrfjeld-Johnsen." 2004. http://d-nb.info/970132964/34.
Full textRietveld, Leslie A. "Cell autonomous and cell non-autonomous effects of mosaic Mecp2 expression on layer V pyramidal cell morphology in a mouse model of Rett Syndrome." Thesis, 2012. http://hdl.handle.net/1828/4370.
Full textGraduate
Goodfellow, Nathalie M. "Serotonin 5-HT Receptor Currents in the Healthy Rodent Prefrontal Cortex and in a Model of Affective Disorders." Thesis, 2013. http://hdl.handle.net/1807/35831.
Full text