Academic literature on the topic 'Layer-wise relevance propagation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Layer-wise relevance propagation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Layer-wise relevance propagation"
Huang, Xinyi, Suphanut Jamonnak, Ye Zhao, Tsung Heng Wu, and Wei Xu. "A Visual Designer of Layer‐wise Relevance Propagation Models." Computer Graphics Forum 40, no. 3 (2021): 227–38. http://dx.doi.org/10.1111/cgf.14302.
Full textJung, Yeon-Jee, Seung-Ho Han, and Ho-Jin Choi. "Explaining CNN and RNN Using Selective Layer-Wise Relevance Propagation." IEEE Access 9 (2021): 18670–81. http://dx.doi.org/10.1109/access.2021.3051171.
Full textJung, Yeon‐Jee, Seung‐Ho Han, and Ho‐Jin Choi. "SLRP: Improved heatmap generation via selective layer‐wise relevance propagation." Electronics Letters 57, no. 10 (2021): 393–96. http://dx.doi.org/10.1049/ell2.12061.
Full textBach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation." PLOS ONE 10, no. 7 (2015): e0130140. http://dx.doi.org/10.1371/journal.pone.0130140.
Full textXu, Jincheng, and Qingfeng Du. "Adversarial attacks on text classification models using layer‐wise relevance propagation." International Journal of Intelligent Systems 35, no. 9 (2020): 1397–415. http://dx.doi.org/10.1002/int.22260.
Full textGrezmak, John, Jianjing Zhang, Peng Wang, Kenneth A. Loparo, and Robert X. Gao. "Interpretable Convolutional Neural Network Through Layer-wise Relevance Propagation for Machine Fault Diagnosis." IEEE Sensors Journal 20, no. 6 (2020): 3172–81. http://dx.doi.org/10.1109/jsen.2019.2958787.
Full textKim, Juhwan, Geun Ho Gu, Juhwan Noh, et al. "Predicting potentially hazardous chemical reactions using an explainable neural network." Chemical Science 12, no. 33 (2021): 11028–37. http://dx.doi.org/10.1039/d1sc01049b.
Full textLi, Heyi, Yunke Tian, Klaus Mueller, and Xin Chen. "Beyond saliency: Understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation." Image and Vision Computing 83-84 (March 2019): 70–86. http://dx.doi.org/10.1016/j.imavis.2019.02.005.
Full textEitel, Fabian, Emily Soehler, Judith Bellmann-Strobl, et al. "Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation." NeuroImage: Clinical 24 (2019): 102003. http://dx.doi.org/10.1016/j.nicl.2019.102003.
Full textKorda, A. I., A. Ruef, S. Neufang, et al. "Identification of voxel-based texture abnormalities as new biomarkers for schizophrenia and major depressive patients using layer-wise relevance propagation on deep learning decisions." Psychiatry Research: Neuroimaging 313 (July 2021): 111303. http://dx.doi.org/10.1016/j.pscychresns.2021.111303.
Full textDissertations / Theses on the topic "Layer-wise relevance propagation"
Rosenlew, Matilda, and Timas Ljungdahl. "Using Layer-wise Relevance Propagation and Sensitivity Analysis Heatmaps to understand the Classification of an Image produced by a Neural Network." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252702.
Full textLapuschkin, Sebastian Verfasser], Klaus-Robert [Akademischer Betreuer] [Gutachter] [Müller, Thomas [Gutachter] Wiegand, and Jose C. [Gutachter] Principe. "Opening the machine learning black box with Layer-wise Relevance Propagation / Sebastian Lapuschkin ; Gutachter: Klaus-Robert Müller, Thomas Wiegand, Jose C. Principe ; Betreuer: Klaus-Robert Müller." Berlin : Technische Universität Berlin, 2019. http://d-nb.info/1177139251/34.
Full textLapuschkin, Sebastian [Verfasser], Klaus-Robert [Akademischer Betreuer] [Gutachter] Müller, Thomas [Gutachter] Wiegand, and Jose C. [Gutachter] Principe. "Opening the machine learning black box with Layer-wise Relevance Propagation / Sebastian Lapuschkin ; Gutachter: Klaus-Robert Müller, Thomas Wiegand, Jose C. Principe ; Betreuer: Klaus-Robert Müller." Berlin : Technische Universität Berlin, 2019. http://d-nb.info/1177139251/34.
Full textBook chapters on the topic "Layer-wise relevance propagation"
Montavon, Grégoire, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek, and Klaus-Robert Müller. "Layer-Wise Relevance Propagation: An Overview." In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28954-6_10.
Full textBinder, Alexander, Sebastian Bach, Gregoire Montavon, Klaus-Robert Müller, and Wojciech Samek. "Layer-Wise Relevance Propagation for Deep Neural Network Architectures." In Lecture Notes in Electrical Engineering. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0557-2_87.
Full textBinder, Alexander, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Müller, and Wojciech Samek. "Layer-Wise Relevance Propagation for Neural Networks with Local Renormalization Layers." In Artificial Neural Networks and Machine Learning – ICANN 2016. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44781-0_8.
Full textHuber, Tobias, Dominik Schiller, and Elisabeth André. "Enhancing Explainability of Deep Reinforcement Learning Through Selective Layer-Wise Relevance Propagation." In KI 2019: Advances in Artificial Intelligence. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30179-8_16.
Full textConference papers on the topic "Layer-wise relevance propagation"
Utsumi, Akira. "Refining Pretrained Word Embeddings Using Layer-wise Relevance Propagation." In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/d18-1520.
Full textWang, Zifei, Xiaolin Huang, Jie Yang, and Nikola Kasabov. "Universal Adversarial Perturbation Generated by Attacking Layer-wise Relevance Propagation." In 2020 IEEE 10th International Conference on Intelligent Systems (IS). IEEE, 2020. http://dx.doi.org/10.1109/is48319.2020.9199956.
Full textIwana, Brian Kenji, Ryohei Kuroki, and Seiichi Uchida. "Explaining Convolutional Neural Networks using Softmax Gradient Layer-wise Relevance Propagation." In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE, 2019. http://dx.doi.org/10.1109/iccvw.2019.00513.
Full textBharadhwaj, Homanga. "Layer-Wise Relevance Propagation for Explainable Deep Learning Based Speech Recognition." In 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 2018. http://dx.doi.org/10.1109/isspit.2018.8642691.
Full textRanguelova, Elena, Eric J. Pauwels, and Joost Berkhout. "Evaluating Layer-Wise Relevance Propagation Explainability Maps for Artificial Neural Networks." In 2018 IEEE 14th International Conference on e-Science (e-Science). IEEE, 2018. http://dx.doi.org/10.1109/escience.2018.00107.
Full textYang, Yinchong, Volker Tresp, Marius Wunderle, and Peter A. Fasching. "Explaining Therapy Predictions with Layer-Wise Relevance Propagation in Neural Networks." In 2018 IEEE International Conference on Healthcare Informatics (ICHI). IEEE, 2018. http://dx.doi.org/10.1109/ichi.2018.00025.
Full textCik, Ivan, Andrindrasana David Rasamoelina, Marian Mach, and Peter Sincak. "Explaining Deep Neural Network using Layer-wise Relevance Propagation and Integrated Gradients." In 2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE, 2021. http://dx.doi.org/10.1109/sami50585.2021.9378686.
Full textEllis, Charles A., Mohammad S. E. Sendi, Jon T. Willie, and Babak Mahmoudi. "Hierarchical Neural Network with Layer-wise Relevance Propagation for Interpretable Multiclass Neural State Classification." In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2021. http://dx.doi.org/10.1109/ner49283.2021.9441217.
Full textYan, Weizheng, Sergey Plis, Vince D. Calhoun, et al. "Discriminating schizophrenia from normal controls using resting state functional network connectivity: A deep neural network and layer-wise relevance propagation method." In 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2017. http://dx.doi.org/10.1109/mlsp.2017.8168179.
Full text