Dissertations / Theses on the topic 'Layered silicate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Layered silicate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Al-Shahrani, Abdullah A. "Layered silicate nanocomposites." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492712.
Full textIşık, Kıvanç Tanoğlu Metin. "Layered silicate/polypropylene nanocomposites/." [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/makinamuh/T000532.pdf.
Full textBecker, Lars-Ole 1973. "High performance epoxy-layered silicate nanocomposites." Monash University, School of Physics and Materials Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/5747.
Full textKaya, Elçin Dilek Tanoğlu Metin. "Development of layered silicate/epoxy nanocomposite/." [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/malzemebilimivemuh/T000538.pdf.
Full textKeywords: epoxy resin, nanocomposites, clay, scanning electron microscope, mechanical properties. Includes bibliographical references (leaves. 93-98).
Lightwing, Andrew. "Catastrophic disruption of layered ice-silicate bodies." Thesis, University of Kent, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.589961.
Full textKato, Ryo. "Interfacial interactions in polymer layered silicate nanocomposites." Thesis, Manchester Metropolitan University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491172.
Full textLander, Julie-Anne. "Structure development in silicate-layered polymer nanocomposites." Thesis, Brunel University, 2002. http://bura.brunel.ac.uk/handle/2438/4390.
Full textLewis, M. N. "Styrene-ethylene/butylene-styrene layered silicate nanocomposites." Thesis, Queen's University Belfast, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432525.
Full textHa, Yung-Hoon Sam 1975. "Hierarchical layered-silicate-- lamellar triblock copolymer nanocomposites." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29969.
Full textIncludes bibliographical references.
The fundamental role of the layered-silicates in a styrene-butadiene-styrene triblock copolymer (SBS) as a function of layered-silicate dispersion during deformation was investigated. Predominantly immiscible composites of mixed morphology provided the initial proof that dramatic alteration of the SBS deformation behavior exists, but a clear understanding of the nature of reinforcement was precluded due to the fiber symmetric orientation of the SBS and the mixed clay morphologies. Following the theory of Vaia and Giannelis, use of a more hydrophobic organically modified clay resulted in an intercalated morphology with a near single crystalline texture of the SBS due to roll-casting. Significant heterogeneous deformation was observed at ambient conditions as well as at elevated temperature as verified through Cohen's affine deformation model in combination with Kratky's scattering pattern model. The intercalated morphology shows little or modest mechanical property enhancements at all temperatures studied. Exfoliated nanocomposite was produced by functionalization of the clay surfaces with polystyrene, altering the enthalpic interactions. Entropic interactions were also controlled by varying the molecular weight of the surfactant and the grafting density and shows remarkable agreement with the theory proposed by Balazs et al. Due to the increase surface volume ratio of the clay, a flipping transition of the block copolymer morphology was observed during roll-casting producing a near single crystalline parallel/parallel clay/BCP orientation. The modulus was relatively unaffected whereas the toughness increased significantly due to an earlier onset of strain hardening.
by Yung-Hoon Sam Ha.
Ph.D.
Kornmann, Xavier. "Synthesis and characterisation of thermoset-layered silicate nanocomposites." Doctoral thesis, Luleå, 2001. http://epubl.luth.se/1402-1544/2001/14/index.html.
Full textLiu, Jia. "Polymer-layered silicate nanocomposites : synthesis, structure and properties /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?MECH%202004%20LIU.
Full textKatoch, Sunain, Vinay Sharma, and Patit Paban Kundu. "Swelling kinetics of unsaturated polyester–layered silicate nanocomposite." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-186443.
Full textLimpanapittayatorn, Pipat. "Factors influencing the formation of polymer layered silicate nanocomposites." Thesis, Manchester Metropolitan University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400600.
Full textMollet, Vincent. "Characterization of exfoliation and intercalation in polymer layered silicate nanocomposites." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82620.
Full textPolyamide-6 (PA) and polystyrene (PS) nanocomposites were produced by melt processing the resins with several grades of organically modified clay in a twin screw extruder (TSE). The TSE was operated in two different configurations (C and A). The effects of the type of organoclay, TSE configuration, clay concentrations and addition of a compatibilizing agent in the matrix were evaluated.
Both WAXD and TEM analysis revealed exfoliated or intercalated structures for PA-based nanocomposites depending on the organoclay, whereas PS-based nanocomposites mainly exhibited intercalated structure. A quantitative analysis of the diffraction peaks was carried out in order to identify the ambiguous nature of the secondary reflection peak. Depending on the case, it is proposed that the secondary reflection peak could be due to a combination of secondary reflection of the intercalated structure and a primary reflection of a collapsed structure of the layered silicate particles.
Wong, Kwok Wai. "Preparation and crystallization characterization of polypropylene-layered silicate clay nanocomposites." access abstract and table of contents access full-text, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/dissert.pl?msc-ap-b21175184a.pdf.
Full textAt head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Sept. 4, 2006) Includes bibliographical references.
Tarrant, Anne Elizabeth. "Thermoset-acrylic/layered-silicate nanocomposites : synthesis and structure-property relationships." Thesis, Imperial College London, 2005. http://hdl.handle.net/10044/1/7515.
Full textTasan, Cemal Cem. "Production And Characterization Of Resol Type Phenolic Resin / Layered Silicate Nanocomposites." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605992/index.pdf.
Full textP/LS research have drawn great attention starting with the pioneering works of Toyota Research Group in 1980&rsquo
s. The research is now being carried out world wide
since the excellent properties of these new materials, which is achieved by using very low amounts of a cheap reinforcement material (clay), increases the interest on these materials everyday after. In this present study, the object was to investigate the production parameters of phenol formaldehyde based layered silicate nanocomposites. For this purpose, 14 different specimen groups were produced
using two different resol type phenolic resins (PF76 and PF76TD) as the matrix
and 9 different montmorillonite clays (Rheospan, Resadiye, Cloisite Na+, 10A, 15A, 20A, 25A, 30B, 94A) as the reinforcement phase. Initially the curing schedules for the available resins were experimentally determined. Then, a short and effective mixing procedure for the thermosetting resin and the montmorillonite clay was developed. The effects of several processing parameters
such as clay type, clay source, clay content, clay modification, resin type, resin cure type, cure cycle and mixing cycle were determined by X-ray Diffraction, Scanning Electron Microscopy and Mechanical Tests. Then, Transmission Electron Microscopy was used to investigate the level of intercalation and/or exfoliation of the layered silicates. Finally, Differential Scanning Calorimetry was also carried out to analyse thermal properties of the specimens. It was concluded that, a partially intercalated and/or exfoliated structure could be obtained in resol type phenolic resin based systems at very low clay contents (such as 0,5%) leading to remarkable increases in mechanical properties (e.g. 66% increase in fracture toughness).
Firthriyah, Nural Hidayati. "Structure Development and Properties of Flexible Polyurethane Foam-Layered Silicate Nanocomposites." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503646.
Full textSheng, Nuo 1977. "Micro/nanoscale modeling of anisotropic mechanical properties of polymer/layered-silicate nanocomposites." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/28257.
Full textIncludes bibliographical references (leaves 123-125).
Polymer nano-clay composites have been observed to exhibit dramatic enhancements in mechanical properties with relatively low filler loadings (1-4 percent volume fraction). These property enhancements have been speculated to be a result of the change in polymer morphology and properties within the polymer/particle interfacial regions, due to the nanometer length scale and the large interface area/unit volume of the nanoparticles. In this work, the potential contribution of composite-level effects on the observed enhancements is explored. Two-dimensional models of various representative volume elements (RVEs) of the underlying structure of the polymer nano-clay composite are constructed. These models are characterized by clay particle volume fraction and micro/nano scale morphological features such as clay particle aspect ratio (length/thickness, L/t), clay particle distribution (random vs. regular patterns) and clay particle orientation distribution. Macroscopic moduli of these RVEs are predicted as a function of these geometrical parameters as well as particle and matrix stiffness parameters through FEM simulations. Effective properties of intercalated clay particles have been estimated in terms of characteristic clay structural parameters (interlayer spacing and number of layers), with additional information from molecular dynamics simulations of silicate layer stiffness. The predictions of macroscopic stiffness from these two-dimensional micromechanical models, based on structure-dependent particle volume fraction and properties, are consistent with experimental observations. Furthermore, studies of the local stress/strain fields show that the stiffness enhancement comes through the efficient load transfer mechanism in the high aspect ratio fillers, modulated by the strain shielding effect in the matrix. These results suggest that physically-based composite level interpretations may explain the stiffness enhancement mechanism of polymer nanocomposites to a large degree. The adopted methodology offers promise for study of related properties in polymer/layered-silicate nanocomposites.
by Nuo Sheng.
S.M.
Mbanjwa, Khangelani Methuli. "A study of the morphology-property relationships of polymer-layered silicate nanocomposites." Thesis, Cape Peninsula University of Technology, 2007. http://hdl.handle.net/20.500.11838/2615.
Full textThe continuous development of new materials and the improvement of existing ones ensure a balance between technological growth and environmental sustainability. With the above trade-offs, the quality of life for humankind is continually being improved. Polymeric materials are some of our most valued commodities in our everyday lives. They continue to be developed and improved in a variety of ways; one of which is to improve their properties by preparing nanocomposites. Polymer-based nanocomposites (PNCs) is a way of getting novel properties and enhancing existing one in polymer matrices, by incorporating additives on a nano-scale. The most significant advantage of PNCs is the potential to design and tailor properties for a specific application, since the control of the structure can be done at the molecular level. Therefore, a fundamental understanding of the relationships between the structure and the properties of PNCs is of utmost importance. Amongst the most studied and researched PNC materials, polymer-layered silicate nanocomposites (PLSNs) have recently enjoyed attention from academia and industry. In the current study structure-property relationships of PLSNs were investigated. Polystyrene (PS) was chosen as the base polymer due to its wide use in many articles such as in packaging. It was also a material of choice based on its poor mechanical properties in its natural state (unfilled), so as to contribute in its property improvement. Montmorillonite (MMT) was a layered silicate (clay) of choice, as much research has been done on it, and it is available worldwide, as a main component in Bentonite (a natural material). Clays are composed of sheet-like, layered particles, which, when in a suitable environment, can delaminate into single, nano-sized sheets. The sheets are held together by van der Waals forces and between the sheets are exchangeable cations. The clays are hydrophilic in nature and cannot readily delaminate in a hydrophobic polymer matrix due to the differences in surface energies. A MMT surface was functionalized to be hydrophobic by conducting an ion exchange reaction with alkyl ammonium surface active agents (surfactants). Polymerizable surfactants (surfmers) were used to enhance the interfacial interaction between the PS matrix and MMT silicate layers. The organically modified clays (organoclays) were used in synthesizing polystyrene-layered silicate nanocomposites (PS-LSN) by an in-situ intercalative polymerization method. The polymerization of the nanocomposites was conducted in bulk. The morphologies of the nanocomposites were characterized using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (Ope). The study was further expanded to the investigation of the effects of the nanocomposite structure, type of organic modifier, and amount of clay loading on the properties of the materials. The properties were studied by dynamic mechanical analysis (DMA), thermomechanical analysis (TMA) and dielectric analysis (DEA). The properties were dependent on the interfacial processes between the clay layers and the polymer matrix. The changes in properties compared to the PS homopolymer showed time and temperature dependent effects, as determined by DEA. Even though the dynamics of the interfacial interactions are still not fully understood, the nanocomposites showed improvements in properties compared to the homopolymers.
Aldousiri, Barjas. "The manufacture, properties and characterisation of layered silicate reinforced spent polymer nanocomposites." Thesis, University of Portsmouth, 2011. https://researchportal.port.ac.uk/portal/en/theses/the-manufacture-properties-and-characterisation-of-layered-silicate-reinforced-spent-polymer-nanocomposites(e76905dd-2e8e-46e5-959f-2ee6ac05e684).html.
Full textMartinez, Vilarino Sofia. "Thermal and transport properties of layered silicate nanomaterials subjected to extreme thermal cycling." ScholarWorks@UNO, 2007. http://scholarworks.uno.edu/td/556.
Full textKatoch, Sunain, Vinay Sharma, and Patit Paban Kundu. "Swelling kinetics of unsaturated polyester–layered silicate nanocomposite: depending on the fabrication method." Diffusion fundamentals 13 (2010) 1, S. 1-31, 2010. https://ul.qucosa.de/id/qucosa%3A13860.
Full textGintert, Michael Jason. "A NOVEL APPROACH TO OBTAIN HIGH PERFORMANCE LAYERED SILICATE THERMOSET POLYIMIDE MATRIX NANOCOMPOSITES." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1185469995.
Full textAlateyah, Abdulrahman Ibrahim S. "Characterisations and properties of nanocomposites based upon vinyl ester matrix and layered silicate." Thesis, University of Portsmouth, 2014. https://researchportal.port.ac.uk/portal/en/theses/characterisations-and-properties-of-nanocomposites-based-upon-vinyl-ester-matrix-and-layered-silicate(284a9725-a8b1-4d34-9f30-64926735cd1b).html.
Full textGatos, Konstantinos G. [Verfasser], and Jôzsef [Akademischer Betreuer] Karger-Kocsis. "Structure-Property Relationships in Rubber/Layered Silicate Nanocomposites / Konstantinos, G. Gatos ; Betreuer: Jôzsef Karger-Kocsis." Kaiserslautern : Technische Universität Kaiserslautern, 2018. http://d-nb.info/116023552X/34.
Full textPourbeik, Pouya. "Nanostructure and Engineering Properties of 1.4 nm Tobermorite, Jennite and other Layered Calcium Silicate Hydrates." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32452.
Full textAl-Yamani, Faisal M. "A route to enhanced intercalation in rubber-silicate nanocomposites." Akron, OH : University of Akron, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1124544242.
Full text"August, 2005." Title from electronic thesis title page (viewed 11/28/2005) Advisor, Lloyd Goettler; Faculty Reader, Avraam I. Isayev; Department Chair, Sadhan C. Jana; Dean of College, Frank N. Kelley; Dean of Graduate School, George R. Newkome. Includes bibliographical references.
Samaniuk, Joseph Reese. "Improving the Exfoliation of Layered Silicate in a Poly(ethylene terephthalate) Matrix Using Supercritical Carbon Dioxide." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/32187.
Full textMaster of Science
Zhu, Bin. "Polystyrene Based Layered Silicate Nanocomposite Foam Using Carbon Dioxide as Blowing Agent and Shear Rheology Study." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1338226070.
Full textKrikorian, Vahik. "Bio-nanocomposites fabrication and characterization of layered silicate nanocomposites based on biocompatible/biodegradable polymers / by Vahik Krikorian." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file , 11.06 Mb, 148 p, 2005. http://wwwlib.umi.com/dissertations/fullcit/3187609.
Full textKalkan, Zehra Sibel. "THE GENERATION AND THERMO-MECHANICAL CHARACTERIZATION OF ADVANCED POLYAMIDE-6,6 NANOCOMPOSITES USING INTERFACIAL POLYCONDENSATION." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1153753352.
Full textStrauss, William C. "Saturation and foaming of thermoplastic nanocomposites using supercritical CO2." Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4745/.
Full textSilva, Rafael Caetano Jardim Pinto da. "Síntese e caracterização de nanocompósitos do tipo polímero/silicatos lamelares com propriedades anisotrópicas via polimerização RAFT em emulsão." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/97/97136/tde-01022016-143552/.
Full textIn recent years, the incorporation of inorganic particles in a polymer matrix in order to obtain hybrid organic/inorganic systems using different polymerization techniques have received great attention. In this sense, preserve and manage the physical and chemical properties of inorganic particles is essential to maintain its integrity at the nanoscale, as well as to obtain uniform dispersions of them, magnifying the effects of reinforcement and other desired properties into the polymer matrix. When using anisotropic inorganic nanoobjects such as montmorillonite, the most used layered silicate to obtain polymer / layered silicate nanocomposites, this control is presented as a particularly challenging problem. In this context, the controlled radical polymerization (CRP) has been highlighted as an important way to achieve the goals mentioned above, several strategies of organic solvent-borne synthesis can be found in literature in which the effective nanoencapsulation of inorganic particles is given by through the growth of polymer chains on the surface of these inorganic structures. However, few works are found involving obtaining similar route in water-borne, such as suspension, emulsion, miniemulsion, these procedures have great interest in industrial, environmental and actual feasibility of expanding scale in manufacture. Thus, the objective of this research project focuses on the synthesis and characterization of nanocomposite-type polymer / layered silicate via controlled radical polymerization in emulsion media. The controlled radical polymerizations in emulsion, via transfer mechanism for the reversible addition-fragmentation chain (RAFT) have been conducted in the presence of montmorillonite clay (MMT) and mediated by two macroRAFT agents with functional tri-thioesters groups, being the first one constituted by a nonionic poly(ethylene glycol) methyl ether polymeric chain (MPEG-CPP) and the second on being MPEG-CPP derived but containing additionally an ionizable block of poly(methacrylic acid) inserted to its polymeric chain. The parameters of adsorption of MPEG-CPP and MPEG-b-PMAA-CPP agent on the surface of MMT as well as the influence of the polymerization process variables on the adsorption of PEO-RAFT in MMT and colloidal stability of the complex formed macroRAFT agents / MMT were firstly evaluated. Subsequently, the influence of pH, macroRAFT agents and MMT concentrations as well as the type of initiator on the kinetics of RAFT emulsion polymerization were equally evaluated. The techniques used the for adsorption studies and characterization of clays, latexes of hybrid materials and nanocomposites include: UV-vis spectroscopy, dynamic light scattering (DLS), electrophoretic light scattering (ELS), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), dynamic scanning calorimetry (DSC) and transmission electron microscopy (TEM).
Chaparro, Thaíssa de Camargo. "Síntese de nanocompósitos com propriedades anisotrópicas via polimerização radicalar controlada em emulsão." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/97/97134/tde-13092016-110713/.
Full textThe aim of this work is to prepare Laponite RD-based nanocomposite latexes by aqueous emulsion polymerization, using the reversible addition-fragmentation chain transfer (RAFT) polymerization. Laponite platelets were selected as the inorganic filler due, especially, to their anisotropic shape, which allows the production of nanostructured films, but also for their thermal and mechanical properties, their high chemical purity and the uniform dispersity of the platelets. Hydrophilic polymers (macroRAFT) composed of poly(ethylene glycol) (PEG), acrylic acid (AA) or N,N-dimethylaminoethyl methacrylate (DMAEMA) and comprising hydrophobic n-butyl acrylate (BA) units (in some cases) and trithiocarbonate terminal group were initially synthesized. Then, the interaction between the macroRAFTs and the clay was studied through the plot of adsorption isotherms. By acting as coupling agents and stabilizers, the macroRAFT agents were used in the emulsion copolymerization of methyl (meth)acrylate and BA by semi-continuous process in the presence of the clay. Hybrid latex particles with different morphologies were obtained and the results were associated to the nature and concentration of the RAFT (co)polymers, to the pH of the macroRAFT/Laponite dispersion, the glass transition temperature of the final copolymer (function of the composition of the hydrophobic monomers mixture) and to the polymerization conditions. The cryo-TEM images indicate the formation of polymerdecorated Laponite platelets (several latex particles located at the surface of the platelets), dumbbell-like, janus, Laponite-decorated (armored) latex particles, and multiple encapsulated particles (several platelets inside each latex particle). The mechanical properties of polymer/Laponite films were studied by dynamic mechanical analysis and correlated with the particles morphology and the films microstructure.
De, Camargo Chaparro Thaissa. "Synthesis of nanocomposites with anisotropic properties by controlled radical emulsion polymerization Lorena." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1045/document.
Full textThe aim of this work is to prepare Laponite RD-based nanocomposite latexes by aqueous emulsion polymerization, using the reversible addition-fragmentation chain transfer (RAFT) polymerization. Laponite platelets were selected as the inorganic filler due, especially, to their anisotropic shape, which allows the production of nanostructured films, but also for their thermal and mechanical properties, their high chemical purity and the uniform dispersity of the platelets. Hydrophilic polymers (macroRAFT) composed of poly(ethylene glycol) (PEG), acrylic acid (AA) or N,N-dimethylaminoethyl methacrylate (DMAEMA) and comprising hydrophobic n-butyl acrylate (BA) units (in some cases) and trithiocarbonate terminal group were initially synthesized. Then, the interaction between the macroRAFTs and the clay was studied through the plot of adsorption isotherms. By acting as coupling agents and stabilizers, the macroRAFT agents were used in the emulsion copolymerization of methyl (meth)acrylate and BA by semi-continuous process in the presence of the clay. Hybrid latex particles with different morphologies were obtained and the results were associated to the nature and concentration of the RAFT (co)polymers, to the pH of the macroRAFT/Laponite dispersion, the glass transition temperature of the final copolymer (function of the composition of the hydrophobic monomers mixture) and to the polymerization conditions. The cryo-TEM images indicate the formation of polymerdecorated Laponite platelets (several latex particles located at the surface of the platelets), dumbbell-like, janus, Laponite-decorated (armored) latex particles, and multiple encapsulated particles (several platelets inside each latex particle). The mechanical properties of polymer/Laponite films were studied by dynamic mechanical analysis and correlated with the particles morphology and the films microstructure
Este trabalho de tese tem como objetivo a preparação de látices nanocompósitos à base da argila Laponita RD em emulsão aquosa, via polimerização radicalar controlada por transferência de cadeia via adição-fragmentação reversível (RAFT). A Laponita foi escolhida como carga inorgânica devido principalmente à forma anisotrópica de suas lamelas, o que permite a elaboração de filmes nanoestruturados, mas também por suas propriedades térmicas e mecânicas, por sua alta pureza química e pela distribuição uniforme, em termos de tamanho, de suas partículas. Inicialmente, polímeros hidrofílicos (macroRAFT) à base de poli(etileno glicol) (PEG), de ácido acrílico (AA) ou de metacrilato de N,N-dimetilaminoetila (DMAEMA) que contêm unidades hidrofóbicas de acrilato de nbutila (ABu) (em alguns casos) e um grupo tritiocarbonílico terminal foram sintetizados. Em seguida, a interação entre os macroagentes de controle (macroRAFTs) e a argila foi estudada através de isotermas de adsorção. Atuando como agentes de acoplamento e estabilizantes, esses macroRAFTs foram então utilizados na copolimerização em emulsão do (met)acrilato de metila e do ABu em processo semicontínuo na presença da argila Laponita. Partículas de látex híbrido de diferentes morfologias foram obtidas e os resultados foram correlacionados à natureza e à concentração dos macroRAFTs, ao pH da dispersão macroRAFT/Laponita, à temperatura de transição vítrea do copolímero final (função da composição da mistura de monômeros hidrofóbicos) e às condições de polimerização. As análises de cryo-TEM indicam a formação de lamelas de Laponita decoradas com partículas de polímero (várias partículas de látex localizadas na superfície das lamelas), de partículas do tipo dumbbell, janus, blindadas (partículas de látex decoradas com lamelas de argila em sua superfície) ou ainda de partículas multiencapsuladas (diversas lamelas encapsuladas dentro de uma única partícula de látex). As propriedades mecânicas dos filmes de polímero/Laponita foram estudadas por análise dinâmico-mecânica e correlacionadas à morfologia das partículas e à microestrutura dos filmes
Almuhamed, Sliman. "Study and Development of Nonwovens made of Electrospun Composite Nanofibers." Thesis, Mulhouse, 2015. http://www.theses.fr/2015MULH8864.
Full textElectrospinning is the most common method for the production of nanofibres due to its simplicity, repeatability, and the ability to be scaled up. Owing to their advanced properties like the high surface-to-volume ratio, high interfibrous porosity, high adsorption capacity, etc. electrospun nanofibers are good candidates for many applications such as filtration, respiratory masks, composite materials and others. However, some specific applications including sensors, controlled drug delivery systems, supercapacitors, etc. still require complimentary functions that do not exist in pristine nanofibers in their basic structure like the electrical conductivity, surface porosity of the nanofibers, hydrophobicity, and others.Nanomaterials like carbon nanotubes, ordered mesoporous silica, layered silicate, etc. are characterized by particular properties like the high electrical conductivity of carbon nanotubes, the porosity of ordered mesoporous silica or layered silicate. These particular properties of nanomaterials can fulfill of the targeted functions.In our study, nonwovens made from nanofibers of polyacrylonitrile incorporated with multiwalled carbon nanotubes (MWNT), layered silicate type Na-montmorillonite (Na-MMT) or ordered mesoporous silica type SBA-15 are successfully produced by electrospinning.Results reveal that the incorporation of MWNT altered the electrical state of the nonwoven from insolent to conductor where the volume electrical conductivity increased by six order of magnitude (from ~ 2×10-12 to ~ 3×10-6 S/m) with a very low percolation threshold of about 0.5 wt%. The application of mechanical pressure to the conductive nonwoven causes an increase in the volume electrical conductivity with the increase of the applied pressure (up to ~ 2 kPa). Such conductive nonwoven is very interesting for the development of sensor with low amplitude.Results also show that accessibility of the pores of the inorganic particles (i.e. mesopores of SBA-15 and interlayer space of Na-MMT) incorporated into the nanofibers is still possible. It is found that at least 50% of SBA-15 mesopores are still accessible whatever is the electrospinning conditions and SBA-15 mass fraction. In addition, the incorporation of the studied inorganic particles yields higher thermal stability for the composite nanofibers
Bovey, J. "Modified layered silicates as acid catalysts." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596810.
Full textByrne, C. P. "Modification of layered silicates for PET nanocomposites." Thesis, Queen's University Belfast, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431475.
Full textPires, Cleo Thomas Gabriel Vilela Menegaz Teixeira. "Síntese e pilarização de ácidos silícicos lamelares." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/250072.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Química
Made available in DSpace on 2018-08-17T00:22:48Z (GMT). No. of bitstreams: 1 Pires_CleoThomasGabrielVilelaMenegazTeixeira_D.pdf: 3067472 bytes, checksum: c700c7da8e03afe86cb307d460e98b2c (MD5) Previous issue date: 2010
Resumo: Nos últimos anos tem sido observado um crescente interesse na obtenção de materiais lamelares modificados, devido as suas propriedades únicas e consequentes aplicações científicas e tecnológicas possíveis. Ácidos silícicos como a magadeíta, a kaneíta e a ilerita são compostos extremamente versáteis, podendo-se variar os seus espaçamentos basais a partir de intercalações com grupos de cadeia carbônica longa ou troca iônica. Outras alterações possíveis são as substituições isomórficas do silício por átomos tri- ou tetravalentes como alumínio e titânio respectivamente, modificando as propriedades químicas da lamela. Neste trabalho os ácidos silícicos lamelares magadeíta, ilerita e kaneíta foram sintetizados pelo método hidrotérmico, contendo também átomos de Al e Ti inseridos na estrutura. Em todos os casos observou-se que conforme aumenta-se a quantidade de metal adicionado ou o tempo de tratamento hidrotérmico, ocorrem transições de fase que seguem a ordem: amorfa, fase lamelar de interesse, cristobalita e tridimita, bem como suas misturas em situações intermediárias. Diferentes métodos de pilarização com TiO2 foram exaustivamente testados, variando-se uma série de parâmetros. O método que se mostrou mais eficiente consistiu na utilização de CTAB e TBAOH como agentes espaçadores sob refluxo a 353 K, seguido de adição direta do alcoxido no material intercalado seco, então refluxados a 363 K sob fluxo de nitrogênio. Os materiais obtidos por este método possuem mesoporos com 4,8 nm de diâmetro em media, porem a área superficial obtida foi de apenas cerca de 270 m g. Nos materiais pilarizados foram imobilizados os fotocatalisadores pirílio (TPP) e tiapirílio (TPTP) de modo a provar a eficiência na degradação fotocatalítica do pesticida metidation. Os materiais híbridos apresentaram desempenho superior aos fotocatalisadores orgânicos puros, o que representa um ótimo ponto inicial para a otimização deste processo. Também o comportamento fotofísico dos corantes impregnados nos materiais pilarizados foram estudados
Abstract: Recently, the interest to obtain modified layered materials is increasing, due to their properties and possible scientific and technological applications. Silicic acids such as magadiite, kenyaite and ilerite are extremely versatile compounds, allowing to vary the basal spacing by intercalation with carbonic long chains groups or ionic exchange process. Other possible modifications are isomorphic substitution by aluminum, titanium or iron atoms, with changeing the lamella chemical properties. In this investigation layered silicic acids magadiite, ilerite and kenyaite, containing also Al and Ti atoms inserted into the lamellar structure, were synthesized by hydrothermal method. For all cases was observed that with the increase of metal amount added or the hydrothermal treatment time there are phase transitions, following the order: from amorphous, to layered phase to crystobalite and tridimite, as mixtures of them at intermediate situations. Different pilarization methods with TiO2 were exhaustedly tested by varying many parameters. The most efficient methods used CTAB and TBAOH as swelling agents under reflux at 353 K, followed by direct alcoxide addition on the dry material, then refluxed at 363 K with dry nitrogen atmosphere. These materials have mesopores with 4.8 nm average diameter, nevertheless just 270 m g surface area. Some pillared materials were used to immobilize the photocatalyst pyrylium (TPP) and thiopyrylium (TPTP) and then test in the photocatalytic degradation of methidathion pesticide. The hybrid materials showed a better activity than that of pure organic, what means a great initial point to optimize this process. The photophysic behavior of impregnated dyes on pillared materials was also studied
Doutorado
Quimica Inorganica
Doutor em Ciências
Jiang, Zhimei. "Structural investigations of layered silicates by vibrational spectroscopy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ31440.pdf.
Full textCurcella, Alberto. "From silicen to Si films and clusters : silicon growth on Ag and layered materials studied by STM, GIXD and DFT." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS410.
Full textIn this work I summarize the studies conducted during my PhD, concerning the synthesis of silicene layers and thin Si films on Ag(111) and Si deposition on layered materials. I present original results which unveil interesting physical phenomena associated with the system under study. In a first part, I present the outcomes of a combined experimental and theoretical study, based on GIXD measurements and DFT simulations, aimed to determine the exact atomic arrangement of the silicene monolayer structures on Ag(111). Afterwards I focus on the atomic structure of Si thin films on Ag(111). I show, by means of GIXD measurements, that the Si film has a diamond bulklike structure with stacking faults. Finally, I determine the atomic structure of the reconstruction observed on top of the aforementioned diamond bulklike Si film by menas of GIXD measurements. Then, by combined STM and DFT studies I give an original picture for Si growth on Ag(111) above 1 ML Si coverage. In the last part of this Thesis, I report STM studies regarding Si evaporation on several layered materials: HOPG, MoS2, TiTe2 and ZrSe2. I show that on each of these substrates and both for room temperature and high temperature growth, Si evaporation results in the formation 3D Si nanoclusters
Reichel, Oliver [Verfasser]. "Synthesis and Properties of Photochromic Layered Silicates and Model Experiments for Colouring and Reinforcement in Organic Coatings by Layered Silicates / Oliver Reichel." Aachen : Shaker, 2014. http://d-nb.info/1050342216/34.
Full textRamos, Francisca Solânea de Oliveira 1985. "Estruturas 3D a partir de estruturas 2D : transformações hidrotérmica e topotática." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/250404.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química
Made available in DSpace on 2018-08-21T15:14:46Z (GMT). No. of bitstreams: 1 Ramos_FranciscaSolaneadeOliveira_M.pdf: 5550553 bytes, checksum: c97e45758df14cd712ea691a6174a574 (MD5) Previous issue date: 2012
Resumo: A aplicação dos silicatos lamelares como catalisadores apresenta como limitações as baixas área superficial e acidez, porém, esses sólidos têm como principais propriedades a reatividade dos grupos Si-OH e Si-ONa da superfície de suas lamelas e sua capacidade de troca iônica. Em função disso, esses sólidos podem sofrer uma variedade de modificações em sua superfície e em seu espaço lamelar e até passar de uma estrutura 2D para uma estrutura 3D. As lamelas do silicato lamelar Na-RUB-18, além de serem recobertas por Si-OH e Si-O, são constituídas de cavidades de quatro anéis de cinco membros [5], presentes tanto no RUB-24 quanto na MOR, assim como em outros zeólitos, indicando que tal lamelar seja potencial precursor de estruturas zeolíticas. Por tais motivos, o presente trabalho teve como objetivo estudar e descrever como o Na-RUB-18 se transforma nas estruturas zeolíticas MOR e RUB-24, por processos hidrotérmico e topotático, respectivamente, e como essas estruturas 2D e 3D se relacionam. A gradual aproximação das lamelas do Na-RUB-18 e conseqüente condensação dos grupos Si-OH, ou seja, unidades Q ([O4Si]3Si-OH), ocasiona a formação de ligações Si-O-Si, unidades Q ([O4Si]4-Si), gerando a estrutura 3D. No caso do zeólito MOR, esse processo é induzido pela adição de uma fonte de alumínio, Al[OCH(CH3)2]3 ou Na2Al2O4. O presente trabalho também investiga a etapa de aproximação das lamelas do Na-RUB-18, ocasionando na sua condensação em RUB-24. A condensação das lamelas do precursor lamelar no RUB-24 via processo topotático é conduzida por um agente direcionador de estrutura, o íon trietilenotetramônio, comprovando que tal processo, como a transformação hidrotérmica, não acontece aleatoriamente
Abstract: The application of the layered silicates in heterogeneous catalysis has limitations such as low surface area and acidity. However, these solids also have ion exchange capacity and their surfaces can be covalently modified with silylation reagents. As a result, they can undergo a variety of surface changes yielding modifications in interlayer space and in the structure lamellar that may even cause collapse of a 2D structure to a 3D. The framework of layered silicate Na-RUB-18 is composed of four five-membered rings, [5] and its surface made of Si-OH and Si-ONa. The [5] cage is a building unit also found in zeolitic structures, as RUB-24 and MOR, indicating that the structure of Na-RUB-18 contains important elements of microporous materials structures and should be regarded as a potential precursor structure to the three-dimensional four-connected microporous framework silicates. This work aimed of studying and describing the transformations of the Na-RUB-18 into MOR and RUB-24 by hydrothermal and topotactic process, respectively. The gradual reduction of interlayer distance of the Na-RUB-18 led to the condensation of the Si-OH groups, Q units ([O4Si]3Si-OH), forming Si-O-Si bonds, Q units ([O4Si]4-Si), i.e., a 3D structure. In the preparation of MOR zeolite by hydrothermal transformation, the process is conducted through addition of a aluminum source, Al[OCH(CH3)2]3 or Na2Al2O4. This work also investigated the formation of RUB-24 through Na-RUB-18 collapsing. The topotactic reaction between Si-OH groups of the lamellar precursor was conducted by a structure-directing agent, triethylenetetrammonium ion, proving that this process, as the hydrothermal transformation, does not occur randomly
Mestrado
Quimica Inorganica
Mestra em Química
Kostova, Mariya Hristova. "Synthesis and characterization of new layered and microporous photoluminescent silicates." Doctoral thesis, Universidade de Aveiro, 2007. http://hdl.handle.net/10773/3190.
Full textEsta tese tem como principal objectivo a síntese, a caracterização estrutural e o estudo das propriedades de fotoluminescência de novos silicatos, lamelares e microporosos de terras raras. As técnicas de caracterização utilizadas foram a difracção de raios-X de pós e de mono-cristal, a microscopia electrónica de varrimento, as análises térmica e elementar, e as espectroscopias de fotoluminescência, ressonância magnética nuclear, Raman e infravermelho. Os silicatos de terras raras cristalinos foram obtidos por síntese hidrotérmica em condições de temperatura e pressão moderadas. Os silicatos lamelares AV-22, K3[(RE)Si3O8(OH)2], RE3+=Y3+, Eu3+, Er3+ ,Tb3+, Gd3+ e Ce3+ são sistemas hóspede-hospedeiro convenientes para criar materiais multifuncionais com um amplo leque de propriedades. A estrutura dos materiais AV-22 foi determinada por difracção de raios-X de mono-cristal. Os materiais Tb- e Eu-AV-22 são emissores de luz visível (verde e vermelho, respectivamente), com eficiências comparáveis à dos padrões usados em lâmpadas comerciais, enquanto que Er-AV-22 é um emissor de infravermelho, à temperatura ambiente. A incorporação de Ce3+ e Tb3+ no mesmo silicato lamelar cria um efectivo canal de transferência da energia do primeiro para o segundo. Após calcinação a 650 ºC, os materiais AV-22 sofrem uma transformação de fase, convertendo-se em uma estrutura de poros estreitos, conhecida como AV-23, K3[RESi3O9], RE3+=Y3+, Eu3+, Er3+ e Tb3+. O valor da radiância da amostra Tb-AV-23 é semelhante à do padrão (Gd2O2S:Tb) verde de Tb3+. O processo de calcinação aumenta a intensidade da emissão de Er3+ (essencialmente devido à remoção de grupos OH) e a importância das interacções Er3+-Er3+ como um mecanismo de extinção da fotoluminescência. Os silicatos microporosos AV-24, K7Ln3Si12O32⋅3H2O, Ln3+=Eu3+, Sm3+, Tb3+ e Gd3+ constituem o primeiro sistema que possui dímeros Ln-O-Ln isolados em uma matriz siliciosa, exibindo uma emissão característica: o tempo de vida do estado excitado 5D0 é notavelmente longo, ca. 10 ms a 10 K. A estrutura de todos estes silicatos admite a inclusão de um segundo (ou até mesmo um terceiro) tipo de ião Ln3+ na rede cristalina, permitindo um ajuste (muitas vezes fino) das propriedades de fotoluminescencia.
This thesis reports the synthesis, structural characterization and photoluminescence properties of new layered and microporous rare-earth silicates. These materials have been characterized by powder and single crystal Xray diffraction, scanning electron microscopy, thermal analysis, elemental analysis, nuclear magnetic resonance, infrared, Raman and photoluminescence spectroscopies. The crystalline rare-earth silicates were obtained by hydrothermal synthesis at moderate temperatures and pressures. Layered rare-earth silicates AV-22, K3[(RE)Si3O8(OH)2], RE3+=Y3+, Eu3+, Er3+ ,Tb3+, Gd3+ and Ce3+ are host-guest systems suitable for engineering multifunctional materials with tuneable properties. The structure of AV-22 was solved by single crystal X-ray diffraction. The Tb- and Eu-AV-22 samples are visible emitters (green and red, respectively) with output efficiency comparable to that of standards used in commercial lamps, while Er-AV-22 is a roomtemperature infrared phosphor. The incorporation of Ce3+ and Tb3+ in the same layered silicate induces and effective Ce3+ to Tb3+ energy transfer channel. Upon calcination at 650 ºC, AV-22 materials undergo a phase transformation to small-pore framework AV-23, K3[RESi3O9], RE3+=Y3+, Eu3+, Er3+ and Tb3+. The radiance values of Tb-AV-23 and standard Tb3+ green phosphors (Gd2O2S:Tb) are similar. The calcination process increases the intensity of the Er3+ emission (essentially due to the removing of OH groups) and the importance of the Er3+-Er3+ interactions as a quenching emission channel. Microporous lanthanide silicates AV-24, K7Ln3Si12O32⋅3H2O, Ln3+=Eu3+, Sm3+ ,Tb3+ and Gd3+ are the first reported to contain Ln-O-Ln dimmers isolated in a siliceous matrix and exhibiting a unique emission feature: the lifetime of the 5D0 excited state is remarkably long, ca. 10 ms at 10 K. The structure of all these silicates allows the inclusion of a second (or even third) type of Ln3+ ion in the framework and, therefore, the fine-tuning of their photoluminescence properties.
Tang, Youhong. "Microrheological study on polyethylene/thermotropic liquid crystalline polymer/layered silicates nanocomposites /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CENG%202007%20TANG.
Full textVamvounis, Emmanouil. "Polypropylene ternary nanocomposites with layered silicates and single-walled carbon nanotubes." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.499936.
Full textWeiß, Stephan [Verfasser], and Axel H. E. [Akademischer Betreuer] Müller. "Hybrids Based on Layered Silicates / Stephan Weiß. Betreuer: Axel H. E. Müller." Bayreuth : Universität Bayreuth, 2013. http://d-nb.info/1059353024/34.
Full textMingbunjerdsuk, Jirachai. "Organically-modified layered silicates as reinforcing fillers for natural and synthetic rubbers." Thesis, Loughborough University, 2005. https://dspace.lboro.ac.uk/2134/33646.
Full textBenasutti, Patrick B. "Electronic and Structural Properties of Silicene and Graphene Layered Structures." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1348192958.
Full text