Academic literature on the topic 'LCOH (Levelized Cost of Hydrogen)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LCOH (Levelized Cost of Hydrogen).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LCOH (Levelized Cost of Hydrogen)"
Solyanik, Andrey. "Analysis of cost efficiency of hydrogen production via electrolysis: the Russian case study." E3S Web of Conferences 289 (2021): 04002. http://dx.doi.org/10.1051/e3sconf/202128904002.
Full textXia, Tian, Mostafa Rezaei, Udaya Dampage, Sulaiman Ali Alharbi, Omaima Nasif, Piotr F. Borowski, and Mohamed A. Mohamed. "Techno-Economic Assessment of a Grid-Independent Hybrid Power Plant for Co-Supplying a Remote Micro-Community with Electricity and Hydrogen." Processes 9, no. 8 (August 6, 2021): 1375. http://dx.doi.org/10.3390/pr9081375.
Full textRosenstiel, Andreas, Nathalie Monnerie, Jürgen Dersch, Martin Roeb, Robert Pitz-Paal, and Christian Sattler. "Electrochemical Hydrogen Production Powered by PV/CSP Hybrid Power Plants: A Modelling Approach for Cost Optimal System Design." Energies 14, no. 12 (June 10, 2021): 3437. http://dx.doi.org/10.3390/en14123437.
Full textAhshan, Razzaqul. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman." Sustainability 13, no. 17 (August 24, 2021): 9516. http://dx.doi.org/10.3390/su13179516.
Full textGunawan, Tubagus Aryandi, Alessandro Singlitico, Paul Blount, James Burchill, James G. Carton, and Rory F. D. Monaghan. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?" Energies 13, no. 7 (April 8, 2020): 1798. http://dx.doi.org/10.3390/en13071798.
Full textPerna, Alessandra, Mariagiovanna Minutillo, Simona Di Micco, Viviana Cigolotti, and Adele Pianese. "Ammonia as hydrogen carrier for realizing distributed on-site refueling stations implementing PEMFC technology." E3S Web of Conferences 197 (2020): 05001. http://dx.doi.org/10.1051/e3sconf/202019705001.
Full textKulikov, Aleksandr, Aleksey Loskutov, Andrey Kurkin, Andrey Dar’enkov, Andrey Kozelkov, Valery Vanyaev, Andrey Shahov, et al. "Development and Operation Modes of Hydrogen Fuel Cell Generation System for Remote Consumers’ Power Supply." Sustainability 13, no. 16 (August 20, 2021): 9355. http://dx.doi.org/10.3390/su13169355.
Full textSingh, Shakti, Prachi Chauhan, Mohd Asim Aftab, Ikbal Ali, S. M. Suhail Hussain, and Taha Selim Ustun. "Cost Optimization of a Stand-Alone Hybrid Energy System with Fuel Cell and PV." Energies 13, no. 5 (March 10, 2020): 1295. http://dx.doi.org/10.3390/en13051295.
Full textGracia, Lorién, Pedro Casero, Cyril Bourasseau, and Alexandre Chabert. "Use of Hydrogen in Off-Grid Locations, a Techno-Economic Assessment." Energies 11, no. 11 (November 13, 2018): 3141. http://dx.doi.org/10.3390/en11113141.
Full textHinokuma, Tatsuya, Hooman Farzaneh, and Ayas Shaqour. "Techno-Economic Analysis of a Fuzzy Logic Control Based Hybrid Renewable Energy System to Power a University Campus in Japan." Energies 14, no. 7 (April 1, 2021): 1960. http://dx.doi.org/10.3390/en14071960.
Full textDissertations / Theses on the topic "LCOH (Levelized Cost of Hydrogen)"
VASUDEVAN, ROHAN ADITHYA. "SWOT-PESTEL Study of Constraints to Decarbonization of the Natural Gas System in the EU Techno-economic analysis of hydrogen production in Portugal : Techno-economic analysis of hydrogen production in Portugal." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292186.
Full textDet starka behovet av att ta itu med klimatförändringarna och deras negativa effekter är omfattande världen över. Den europeiska unionen utgör en pionjär när det gäller att såväl hantera sina koldioxidberoende och utsläpp som att implementera reglerande miljöpolitik, och framstår därmed som överlägsen andra stater och organisationer i detta hänseende. Unionen är emellertid fortfarande mycket beroende av fossilt bränsle för att uppfylla sina energibehov, och kvarstår därför som en av världens största importörer av naturgas. Syftet med denna forskningsavhandling är att undersöka befintliga hinder och restriktioner i EU: s politiska ramverk som medför konsekvenser avkolningen av naturgas, samt att undersöka de utjämnande kostnaderna för väteproduktion (LCOH) som kan användas för att avkolna naturgassektorn. Därmed utförs en omfattande studie baserad på befintlig akademisk och vetenskaplig litteratur, EU: s politiska ramverk och stadgar som är relevanta för naturgasindustrin. Dessutom genomförs en teknisk-ekonomisk analys av eventuella ersättningar av naturgas med väte. Valet av väte som forskningsobjekt motiveras olika forskningsstudier som indikerar vikten och förmågan att ersätta till naturgas. Till sist berör studien Portugal. som tillhandahåller en lämplig miljö för billig och grön vätgasproduktion. Av denna anledning är Portugal utvalt som den viktigaste utvärderingsregionen. Studien utvärderar det nuvarande ramverket baserat på en SWOT-analys ((Strength, Weakness, and Opportunities & Weakness), som inkluderar en PESTEL (Political, Economical, Social, Technological, Environmental och Legal) makroekonomisk faktoranalys och elicitering. Den utjömnade vätekostnaden beräknades i blått (SMR - Ångmetanreformering med naturgas som råvara) och grönt väte (elektrolyser med el från elnät, sol och vindkällor). Kostnaderna var specifika för de portugisiska förhållandena under åren 2020, 2030 och 2050 baserat på tillgänglighet av data samt anpassningen till den nationella energi- och klimatplanen (NECP) och klimatåtgärdsramen 2050. Storleken på elektrolyserar baseras på den nuvarande marknadskapaciteten medan SMR är begränsad till 300 MW. Avhandlingen tar endast hänsyn till produktionen av vätgas. Transmission, distribution och lagring av väte ligger utanför analysens räckvidd. Resultaten visar att hindren är främst relaterade till kostnadskonkurrens, förändringar i stadgar och bestämmelser, incitament och begränsningar i formerandet av efterfrågan på koldioxidsnåla gaser på marknaden. Att säkerställa energiförsörjning och tillgång på ett ekonomiskt hållbart sätt kräver omedelbara ändringar av reglerna och politiken, såsom att stimulera utbudet, att skapa en efterfrågan på koldioxidsnåla gaser och genom att beskatta kol. När det gäller LCOH dominerar blåväte beträffande produktionskostnaderna (1,33 € per kg H2) jämfört med grönt väte (4,27 respektive 3,68 € per kg H2) från elnät respektive solenergi. Osäkerhetsanalysen visar vikten av investeringskostnader och effektiviteten vid elektrolysörer och koldioxidskatten för SMR. Med förbättringar av elektrolys-tekniken och ökad koldioxidskatt skulle upptagningen av grön vätgas vara enklare och säkerställa en rättvis men konkurrenskraftig gasmarknad.
Mattsson, Helen, and Jonatan Lindberg. "Vätgasens roll i det regionala energisystemet : Tekno-ekonomiska förutsättningar för Power-to-Power." Thesis, Linköpings universitet, Energisystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-173577.
Full textMore and more intermittent electric power is being built in Sweden today to increase the share of renewable electricity in the energy system. This leads to more uneven electricity generation, which creates problems in terms of more volatile and unpredictable electricity prices. One way to dampen the effect of the increasing intermittent power is to use renewable hydrogen production as load shedding. In this way, the hydrogen gas can potentially become an important part of the fossil-free energy mix. Using hydrogen as energy storage in a Power-to-Power application (P2P) also enables the use of price arbitrage in the electricity market. An increased climate focus has rekindled interest in how hydrogen production can be made profitable. Some signs that investments are taking place are that several countries are investing big money on hydrogen technologies and infrastructure, and collaborations across national borders have been established. This study aims to investigate the techno-economic prerequisites for renewable hydrogen production where the profitability of arbitrage on the Elspot market is explored. This comprises a thorough investigation of commercial technologies suited for Linköping’s energy system. Three cases where constructed with different component constellations. Then the operational strategy was optimised which generated a lower and upper price limit for production and conversion of hydrogen with input price data from Elspot. The optimisation tool in Excel was used in order to obtain these price limits. Visual Basic (VBA) was then used for storage simulation in order to get a perception of the storage development through all the hours of the year. The cost of every kilogram of hydrogen produced was then calculated through Levelized Cost of Energy (LCOE), which made the comparison of the three cases easier. The resulting greenhouse gas emissions when integrating the facilities in each case were also evaluated with a so-called impact analysis. The effect was compared in net emissions in carbon dioxide equivalents for an integration of each facility. The results show that there are commercial technologies that can be integrated with the existing energy system in a resource efficient manner, whereas the economic prerequisites are not as good, where today’s Power-to-Power (P2P) solutions are not profitable. The reason seems to be the combination of insufficient spot price fluctuations and a low system efficiency (14% at best) for each case. The annual revenues correspond to 1 percent of the annual costs and that LCOE lands at about 1500 SEK. A higher utilization percentage of the plant shows a lower LCOE in the investment calculation. The storage simulation indicates that a seasonal storage is needed for this type of facility because of that the spot price fluctuations are not big enough on a daily, weekly or monthly basis. The sensitivity analysis made on the investment calculation and operational strategy also shows that there is no profitability in the P2P cases where parameters regarding investment cost, efficiency and electricity price were set optimistically. The Power-to-Gas case on the other hand shows potential for profitability, all because of lower total investment costs and higher efficiency. All cases except the case with steam methane reforming shows reductions in greenhouse gas emissions when integrated in the regional energy system. The conclusion that can be drawn from the results in the case study is that, in spite of good technological prerequisites and a positive effect on local greenhouse gas emissions, a P2P-application with hydrogen storage cannot be made profitable in a Swedish context in the near future. However, a Power-to-Gas case shows potential for profitability because of its lesser investment cost and that the system efficiency is higher.
Langels, Hanna, and Oskar Syrjä. "Hydrogen Production and Storage Optimization based on Technical and Financial Conditions : A study of hydrogen strategies focusing on demand and integration of wind power." Thesis, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-435176.
Full textConference papers on the topic "LCOH (Levelized Cost of Hydrogen)"
Liu, Jeremy, Rasish Khatri, Freddie Sarhan, and Eric Blumber. "The Development of Turboexpander-Generators for Gas Pressure Letdown Part II: Economic Analysis." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60317.
Full textLau, Hon Chung. "The Color of Energy: The Competition to be the Energy of the Future." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21348-ms.
Full textStack, Daniel, and Charles Forsberg. "Combined Cycle Gas Turbines With Electrically-Heated Thermal Energy Storage for Dispatchable Zero-Carbon Electricity." In ASME 2021 Power Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/power2021-65528.
Full textFrantz, Cathy, Reiner Buck, and Lars Amsbeck. "Design and Cost Study of Improved Scaled-Up Centrifugal Particle Receiver Based on Simulation." In ASME 2020 14th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/es2020-1626.
Full textGobereit, Birgit, Lars Amsbeck, Reiner Buck, and Csaba Singer. "Cost Analysis of Different Operation Strategies for Falling Particle Receivers." In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49354.
Full textTurchi, Craig S., Parthiv Kurup, and Guangdong Zhu. "Revisiting Parabolic Trough Concentrators for Industrial Process Heat in the United States." In ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/power2016-59621.
Full textDoty, Glenn N., David L. McCree, and F. David Doty. "Projections of Levelized Cost Benefit of Grid-Scale Energy Storage Options." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90377.
Full textRuth, Mark F., Victor Diakov, Melissa J. Laffen, and Thomas A. Timbario. "Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33185.
Full textGharbia, Yousef, Mohamed Fayed, and Mohammed Anany. "Steam Generation for EHOR Using PTC System Modeled in SAM." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10332.
Full textBexten, Thomas, Tobias Sieker, and Manfred Wirsum. "Techno-Economic Analysis of a Hydrogen Production and Storage System for the On-Site Fuel Supply of Hydrogen-Fired Gas Turbines." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59073.
Full textReports on the topic "LCOH (Levelized Cost of Hydrogen)"
Louvet, Yoann, Stephan Fischer, Simon Furbo, Federico Giovanetti, Franz Mauthner, Daniel Mugnier, and Daniel Philippen. INFO Sheet A01: LCOH for Solar Thermal Applications - Guideline for levelized cost of heat (LCOH) calculations for solar thermal applications. IEA SHC Task 54, December 2017. http://dx.doi.org/10.18777/ieashc-task54-2017-0015.
Full textRamsden, T., D. Steward, and J. Zuboy. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/965528.
Full text