Journal articles on the topic 'Lead Small Molecules'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lead Small Molecules.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jaroch, Stefan, and Hilmar Weinmann. "Putting small molecules in the lead." Nature Chemical Biology 1, no. 4 (2005): 180–83. http://dx.doi.org/10.1038/nchembio0905-180.
Full textLi, Qingxin, and CongBao Kang. "Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery." International Journal of Molecular Sciences 21, no. 15 (2020): 5262. http://dx.doi.org/10.3390/ijms21155262.
Full textLoriamini, Melika, Melissa M. Lewis-Bakker, Kayluz Frias Boligan, et al. "Small Molecule Drugs That Inhibit Phagocytosis." Molecules 28, no. 2 (2023): 757. http://dx.doi.org/10.3390/molecules28020757.
Full textDeepak, G., A. Dinakara Rao Dr., and Babu Khan Mohammad. "Identifying Potential Bace-1 Enzyme Inhibitors /Lead Small Molecules: Relevance to Alzheimer's Diseases." Identifying Potential Bace-1 Enzyme Inhibitors /Lead Small Molecules: Relevance to Alzheimer's Diseases 10, no. 10 (2022): D586—D587. https://doi.org/10.6084/m9.figshare.21436593.
Full textBerzins, Agris, and Andris Actins. "Crystal structures of two molecules with small chemical structure difference." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1686. http://dx.doi.org/10.1107/s2053273314083132.
Full textGregson, Aaron, Kaitlyn Thompson, Stella E. Tsirka, and David L. Selwood. "Emerging small-molecule treatments for multiple sclerosis: focus on B cells." F1000Research 8 (March 1, 2019): 245. http://dx.doi.org/10.12688/f1000research.16495.1.
Full textGeorge, Dare E., and Jetze J. Tepe. "Advances in Proteasome Enhancement by Small Molecules." Biomolecules 11, no. 12 (2021): 1789. http://dx.doi.org/10.3390/biom11121789.
Full textKretić, Danijela S., Marija I. Maslarević, and Dušan Ž. Veljković. "Small Deviations in Geometries Affect Detonation Velocities and Pressures of Nitroaromatic Molecules." Organics 6, no. 2 (2025): 17. https://doi.org/10.3390/org6020017.
Full textGodbole, Adwait Anand, Wareed Ahmed, Rajeshwari Subray Bhat, Erin K. Bradley, Sean Ekins, and Valakunja Nagaraja. "Targeting Mycobacterium tuberculosis Topoisomerase I by Small-Molecule Inhibitors." Antimicrobial Agents and Chemotherapy 59, no. 3 (2014): 1549–57. http://dx.doi.org/10.1128/aac.04516-14.
Full textAlvarez-Gonzalez, Juan Antonio, Robert Maul, Rahul M. Kohli, and Patricia J. Gearhart. "Small molecule inhibitors of Activation-Induced Deaminase." Journal of Immunology 200, no. 1_Supplement (2018): 48.18. http://dx.doi.org/10.4049/jimmunol.200.supp.48.18.
Full textSui, Xin, Man Pan, and Yi-Ming Li. "Insights into the Design of p97-targeting Small Molecules from Structural Studies on p97 Functional Mechanism." Current Medicinal Chemistry 27, no. 2 (2020): 298–316. http://dx.doi.org/10.2174/0929867326666191004162411.
Full textNorel, R., H. J. Wolfson, and R. Nussinov. "Small Molecule Recognition: Solid Angles Surface Representation and Molecular Shape Complementarity." Combinatorial Chemistry & High Throughput Screening 2, no. 4 (1999): 223–36. http://dx.doi.org/10.2174/1386207302666220204193837.
Full textUrsu, Andrei, Jessica L. Childs-Disney, Ryan J. Andrews, et al. "Design of small molecules targeting RNA structure from sequence." Chemical Society Reviews 49, no. 20 (2020): 7252–70. http://dx.doi.org/10.1039/d0cs00455c.
Full textSaftić, Dijana, Željka Ban, Josipa Matić, Lidija-Marija Tumirv, and Ivo Piantanida. "Conjugates of Classical DNA/RNA Binder with Nucleobase: Chemical, Biochemical and Biomedical Applications." Current Medicinal Chemistry 26, no. 30 (2019): 5609–24. http://dx.doi.org/10.2174/0929867325666180508090640.
Full textZubair, Tanzida, and Debasish Bandyopadhyay. "Small Molecule EGFR Inhibitors as Anti-Cancer Agents: Discovery, Mechanisms of Action, and Opportunities." International Journal of Molecular Sciences 24, no. 3 (2023): 2651. http://dx.doi.org/10.3390/ijms24032651.
Full textZablowsky, Nina, Lydia Farack, Sven Rofall, et al. "High Throughput FISH Screening Identifies Small Molecules That Modulate Oncogenic lncRNA MALAT1 via GSK3B and hnRNPs." Non-Coding RNA 9, no. 1 (2023): 2. http://dx.doi.org/10.3390/ncrna9010002.
Full textAnand, Kumar, Sayak Khawas, Apurva Singh, Puja kumari, Neha Nupur, and Neelima Sharma. "Harnessing the Power of Natural Products in Drug Discovery." Journal of Pharmaceutical Technology, Research and Management 11, no. 1 (2023): 1–18. http://dx.doi.org/10.15415/jptrm.2023.111001.
Full textFakih, Taufik Muhammad, Deis Hikmawati, Endang Sutedja, Reiva Farah Dwiyana, Nur Atik, and Muchtaridi Muchtaridi. "In silico investigation of potential interleukin-8 (IL-8) and Cathelicidin (LL-37) inhibitors for rosacea treatment." Pharmacia 71 (August 14, 2024): 1–12. http://dx.doi.org/10.3897/pharmacia.71.e124099.
Full textFakih, Taufik Muhammad, Deis Hikmawati, Endang Sutedja, Reiva Farah Dwiyana, Nur Atik, and Muchtaridi Muchtaridi. "In silico investigation of potential interleukin-8 (IL-8) and Cathelicidin (LL-37) inhibitors for rosacea treatment." Pharmacia 71 (August 14, 2024): 1–12. https://doi.org/10.3897/pharmacia.71.e124099.
Full textCashman, John R. "Small Molecule Regulation of Stem Cells that Generate Bone, Chondrocyte, and Cardiac Cells." Current Topics in Medicinal Chemistry 20, no. 26 (2020): 2344–61. http://dx.doi.org/10.2174/1568026620666200820143912.
Full textVelagapudi, Sai Pradeep, Michael D. Cameron, Christopher L. Haga, et al. "Design of a small molecule against an oncogenic noncoding RNA." Proceedings of the National Academy of Sciences 113, no. 21 (2016): 5898–903. http://dx.doi.org/10.1073/pnas.1523975113.
Full textShubhangi, H. Bhowate* Dr. Dinesh R. Chaple Dr. Alpana J. asnani Pranita I. Rathod Aishwarya V. Lichade Vaishnavi S. Bhure. "Molecular Docking: A Powerful Tool In Modern Drug Discovery And Its Approaches." International Journal in Pharmaceutical Sciences 1, no. 10 (2023): 170–81. https://doi.org/10.5281/zenodo.10017630.
Full textAjay, Amrendra K., Philip Chu, Poojan Patel, et al. "High-Throughput/High Content Imaging Screen Identifies Novel Small Molecule Inhibitors and Immunoproteasomes as Therapeutic Targets for Chordoma." Pharmaceutics 15, no. 4 (2023): 1274. http://dx.doi.org/10.3390/pharmaceutics15041274.
Full textHabchi, Johnny, Sean Chia, Ryan Limbocker та ін. "Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer’s disease". Proceedings of the National Academy of Sciences 114, № 2 (2016): E200—E208. http://dx.doi.org/10.1073/pnas.1615613114.
Full textAnxolabéhère-Mallart, Elodie, Julien Bonin, Claire Fave, and Marc Robert. "Small-molecule activation with iron porphyrins using electrons, photons and protons: some recent advances and future strategies." Dalton Transactions 48, no. 18 (2019): 5869–78. http://dx.doi.org/10.1039/c9dt00136k.
Full textAlberti, S., and S. Parodi. "Signaling Protein Networks as Targets of New Antineoplastic Drugs." International Journal of Biological Markers 18, no. 1 (2003): 57–61. http://dx.doi.org/10.1177/172460080301800110.
Full textBozhko, Y. Y., R. K. Zhdanov, K. V. Getz, and V. R. Belosludov. "Effect of the THF molecules on the hydrate cavities formation with adding NaCL molecules into the modeling system." Journal of Physics: Conference Series 2057, no. 1 (2021): 012077. http://dx.doi.org/10.1088/1742-6596/2057/1/012077.
Full textRahman, Sadia, Karlo Wittine, Mirela Sedić, and Elitza P. Markova-Car. "Small Molecules Targeting Biological Clock; A Novel Prospective for Anti-Cancer Drugs." Molecules 25, no. 21 (2020): 4937. http://dx.doi.org/10.3390/molecules25214937.
Full textSmith, Stephen, Claudia Cianci, and Ramon Grima. "Macromolecular crowding directs the motion of small molecules inside cells." Journal of The Royal Society Interface 14, no. 131 (2017): 20170047. http://dx.doi.org/10.1098/rsif.2017.0047.
Full textLin, Tongxiang, and Shouhai Wu. "Reprogramming with Small Molecules instead of Exogenous Transcription Factors." Stem Cells International 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/794632.
Full textSolomon, Gemma C., Justin P. Bergfield, Charles A. Stafford, and Mark A. Ratner. "When “small” terms matter: Coupled interference features in the transport properties of cross-conjugated molecules." Beilstein Journal of Nanotechnology 2 (December 29, 2011): 862–71. http://dx.doi.org/10.3762/bjnano.2.95.
Full textAlshiraihi, Ilham M., Dillon K. Jarrell, Zeyad Arhouma, et al. "In Silico/In Vitro Hit-to-Lead Methodology Yields SMYD3 Inhibitor That Eliminates Unrestrained Proliferation of Breast Carcinoma Cells." International Journal of Molecular Sciences 21, no. 24 (2020): 9549. http://dx.doi.org/10.3390/ijms21249549.
Full textMa, Li, Haiyan Gong, Haiyan Zhu та ін. "Identification Of a Novel Small-Molecule TNFα Inhibitor With Activity Against Inflammation In a Hepatitis Mouse Model". Blood 122, № 21 (2013): 4229. http://dx.doi.org/10.1182/blood.v122.21.4229.4229.
Full textJamtsho, Tenzin, Karma Yeshi, Matthew J. Perry, Alex Loukas, and Phurpa Wangchuk. "Approaches, Strategies and Procedures for Identifying Anti-Inflammatory Drug Lead Molecules from Natural Products." Pharmaceuticals 17, no. 3 (2024): 283. http://dx.doi.org/10.3390/ph17030283.
Full textGong, Chang, Zihao Liu, Qun Lin, et al. "Anti-PITPNM3 small molecular compounds reverse breast cancer metastasis by targeting PITPNM3." Journal of Clinical Oncology 39, no. 15_suppl (2021): e15005-e15005. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e15005.
Full textHeller, Markus, and Horst Kessler. "NMR spectroscopy in drug design." Pure and Applied Chemistry 73, no. 9 (2001): 1429–36. http://dx.doi.org/10.1351/pac200173091429.
Full textNödling, Alexander R., Emily M. Mills, Xuefei Li, et al. "Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoes." Chemical Communications 56, no. 34 (2020): 4672–75. http://dx.doi.org/10.1039/c9cc07931a.
Full textWan, Jing, Yang Li, Jared Benson, et al. "Dynamic processes in transient phases during self-assembly of organic semiconductor thin films." Molecular Systems Design & Engineering 7, no. 1 (2022): 34–43. http://dx.doi.org/10.1039/d1me00078k.
Full textSun, Saisai, Jianyi Yang, and Zhaolei Zhang. "RNALigands: a database and web server for RNA–ligand interactions." RNA 28, no. 2 (2021): 115–22. http://dx.doi.org/10.1261/rna.078889.121.
Full textRivera-Vélez, Sol-Maiam, and Nicolas F. Villarino. "Feline urine metabolomic signature: characterization of low-molecular-weight substances in urine from domestic cats." Journal of Feline Medicine and Surgery 20, no. 2 (2017): 155–63. http://dx.doi.org/10.1177/1098612x17701010.
Full textMonjas, L., L. J. Y. M. Swier, A. R. de Voogd, R. C. Oudshoorn, A. K. H. Hirsch, and D. J. Slotboom. "Design and synthesis of thiamine analogues to study their binding to the ECF transporter for thiamine in bacteria." MedChemComm 7, no. 5 (2016): 966–71. http://dx.doi.org/10.1039/c6md00022c.
Full textFei, Chengbin, Nengxu Li, Mengru Wang, et al. "Lead-chelating hole-transport layers for efficient and stable perovskite minimodules." Science 380, no. 6647 (2023): 823–29. http://dx.doi.org/10.1126/science.ade9463.
Full textSoffer, Adam, Samuel Joshua Viswas, Shahar Alon, et al. "MolOptimizer: A Molecular Optimization Toolkit for Fragment-Based Drug Design." Molecules 29, no. 1 (2024): 276. http://dx.doi.org/10.3390/molecules29010276.
Full textLiu, Lu, Xi Zhao, and Xuri Huang. "Generating Potential RET-Specific Inhibitors Using a Novel LSTM Encoder–Decoder Model." International Journal of Molecular Sciences 25, no. 4 (2024): 2357. http://dx.doi.org/10.3390/ijms25042357.
Full textParate, Shraddha, Vikas Kumar, Danishuddin, Jong Hong, and Keun Lee. "Computational Investigation Identified Potential Chemical Scaffolds for Heparanase as Anticancer Therapeutics." International Journal of Molecular Sciences 22, no. 10 (2021): 5311. http://dx.doi.org/10.3390/ijms22105311.
Full textBergfield, Justin P., Joshua D. Barr, and Charles A. Stafford. "Transmission eigenvalue distributions in highly conductive molecular junctions." Beilstein Journal of Nanotechnology 3 (January 16, 2012): 40–51. http://dx.doi.org/10.3762/bjnano.3.5.
Full textDheeraj, Arpit, Dhanir Tailor, Angel Resendez, et al. "Abstract 3997: Inhibiting ribosomal proteins with a small molecule: Therapeutic strategy for triple negative breast cancer." Cancer Research 82, no. 12_Supplement (2022): 3997. http://dx.doi.org/10.1158/1538-7445.am2022-3997.
Full textIvancevic, Marko R., Jesse A. Wisch, Quinn C. Burlingame, Barry P. Rand, and Yueh-Lin Loo. "(Invited) A General Approach to Induce Ultralong Room Temperature Phosphorescence in Organic Small Molecules." ECS Meeting Abstracts MA2024-01, no. 31 (2024): 1524. http://dx.doi.org/10.1149/ma2024-01311524mtgabs.
Full textTaylor, Howard M. "A Model for the Failure Process of Semicrystalline Polymer Materials under Static Fatigue." Probability in the Engineering and Informational Sciences 1, no. 2 (1987): 133–62. http://dx.doi.org/10.1017/s026996480000036x.
Full textPattabhi, Sowmya, Courtney R. Wilkins, Ran Dong, et al. "Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway." Journal of Virology 90, no. 5 (2015): 2372–87. http://dx.doi.org/10.1128/jvi.02202-15.
Full text