Academic literature on the topic 'Learning activity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Learning activity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Learning activity"
R. D. Gomathi, R. D. Gomathi, and P. Kiruthika P. Kiruthika. "Activity Based Language Learning – an Effective Learning Method." Indian Journal of Applied Research 3, no. 11 (October 1, 2011): 254–55. http://dx.doi.org/10.15373/2249555x/nov2013/82.
Full textKulsum, Umi. "HYBRID LEARNING TIME MODIFICATION CAN IMPROVE LEARNING ACTIVITY AND LEARNING OUTCOMES." SCHOOL EDUCATION JOURNAL PGSD FIP UNIMED 11, no. 3 (December 23, 2021): 263–68. http://dx.doi.org/10.24114/sejpgsd.v11i3.27922.
Full textBridjeshpappula and Geetha narayanankannaiyan. "Assessment of students learning capability adapting activity based learning – STAD." International Journal of Psychosocial Rehabilitation 24, no. 04 (February 28, 2020): 2982–88. http://dx.doi.org/10.37200/ijpr/v24i4/pr201410.
Full textLiu, Qingzhong, Zhaoxian Zhou, Sarbagya Ratna Shakya, Prathyusha Uduthalapally, Mengyu Qiao, and Andrew H. Sung. "Smartphone Sensor-Based Activity Recognition by Using Machine Learning and Deep Learning Algorithms." International Journal of Machine Learning and Computing 8, no. 2 (April 2018): 121–26. http://dx.doi.org/10.18178/ijmlc.2018.8.2.674.
Full textGiddens, Jean Foret. "Innovative Learning Activity." Journal of Nursing Education 47, no. 4 (April 1, 2008): 196. http://dx.doi.org/10.3928/01484834-20080401-08.
Full textMacLeod, Martha L. P. "Innovative Learning Activity." Journal of Nursing Education 48, no. 6 (June 1, 2009): 356. http://dx.doi.org/10.3928/01484834-20090515-10.
Full textHorsley, Trisha Leann. "Innovative Learning Activity." Journal of Nursing Education 49, no. 6 (June 1, 2010): 363–64. http://dx.doi.org/10.3928/01484834-20090521-02.
Full textNoone, Joanne, Stephanie A. Sideras, and Amy Miner Ross. "Innovative Learning Activity." Journal of Nursing Education 48, no. 7 (July 1, 2009): 416. http://dx.doi.org/10.3928/01484834-20090615-11.
Full textNoone, Joanne. "Innovative Learning Activity." Journal of Nursing Education 48, no. 8 (August 1, 2009): 472. http://dx.doi.org/10.3928/01484834-20090717-04.
Full textRoss, Amy Miner, and Donna Markle. "Innovative Learning Activity." Journal of Nursing Education 48, no. 10 (October 1, 2009): 592. http://dx.doi.org/10.3928/01484834-20090918-02.
Full textDissertations / Theses on the topic "Learning activity"
Lompscher, Joachim. "Learning strategies : an essential component of learning activity." Universität Potsdam, 1994. http://opus.kobv.de/ubp/volltexte/2005/450/.
Full textSmith, Raymond. "MULTIZOOM ACTIVITY RECOGNITION USING MACHINE LEARNING." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2162.
Full textPh.D.
School of Computer Science
Engineering and Computer Science
Computer Science
Makris, Dimitrios. "Learning an activity-based semantic scene model." Thesis, City University London, 2004. http://eprints.kingston.ac.uk/7781/.
Full textKim, Juho Ph D. Massachusetts Institute of Technology. "Learnersourcing : improving learning with collective learner activity." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101464.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages [199]-213).
Millions of learners today are watching videos on online platforms, such as Khan Academy, YouTube, Coursera, and edX, to take courses and master new skills. But existing video interfaces are not designed to support learning, with limited interactivity and lack of information about learners' engagement and content. Making these improvements requires deep semantic information about video that even state-of-the-art AI techniques cannot fully extract. I take a data-driven approach to address this challenge, using large-scale learning interaction data to dynamically improve video content and interfaces. Specifically, this thesis introduces learnersourcing, a form of crowdsourcing in which learners collectively contribute novel content for future learners while engaging in a meaningful learning experience themselves. I present learnersourcing applications designed for massive open online course videos and how-to tutorial videos, where learners' collective activities 1) highlight points of confusion or importance in a video, 2) extract a solution structure from a tutorial, and 3) improve the navigation experience for future learners. This thesis demonstrates how learnersourcing can enable more interactive, collaborative, and data-driven learning.
by Juho Kim.
Ph. D.
Olnén, Johanna, and Julia Sommarlund. "Activity Recognition Using IoT and Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295603.
Full textInternet of Things-enheter, så som smarta telefoner och klockor, blir numera allt mer tillgängliga och tekniskt avancerade. Eftersom användningen av dessa smarta enheter stadigt ökar, ökar också tillgången till stora mängder data från sensorer i dessa enheter. I detta projekt utvecklade vi ett system som känner igen vissa aktiviteter genom att tillämpa en linjär klassificerande maskininlärningsmodell på en uppsättning data som extraherats från en accelerometer, en sensor i en smart telefon. Datauppsättningen skapades genom att samla in data från en smart telefon medan vi utförde vardagliga aktiviteter, så som promenader, stå stilla, köra bil och åka tunnelbana. Rå accelerometerdata samlades in och gjordes om till datavektorer innehållandes statistiska mått. Den totala datauppsättningen delades sedan upp i 80% träningsdata och 20% testdata. En maskininlärningsalgoritm, i detta fall en supportvektormaskin, introducerades med träningsdatan och klassificerade slutligen testdatan med en precision på över 90%. Därmed uppfylldes vårt uppsatta mål med att bygga en tjänst med en korrekt klassificering på över 90%. Igenkänning av mänsklig aktivitet har ett stort användningsområde, och kan bidra till förbättrade hälsorekommendationer och en mer effektiv kollektivtrafik.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Pang, Jinyong. "Human Activity Recognition Based on Transfer Learning." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7558.
Full textAxelsson, Henrik, and Daniel Wass. "Machine Learning for Activity Recognition of Dumpers." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260256.
Full textByggnadsbranschen har halkat efter andra branscher i produktivitetsökning. Markarbetesprojekt och andra arbeten där dumprar används är inga undantag. Sådana projekt saknar användarvänliga system för att kartlägga maskinutnyttjande och massaflöde. Nuvarande lösningar bygger framförallt på manuellt arbete. Denna studie syftar skapa kännedom kring hur autonoma system för aktivitetsspårning av dumprar kan öka produktiviteten på markarbetesprojekt. Befintliga autonoma lösningar är inte implementerbara på maskinparker med olika fabrikat eller äldre årsmodeller. Denna studie undersöker möjligheten att applicera aktivitetsigenkänning genom maskininlärning baserad på smartphones placerade i förarhytten för en sådan autonom lösning. Tre maskininlärningsalgoritmer (naive Bayes, random forest och backpropagation neuralt nätverk) tränas och testas på data från sensorer tillgängliga i vanliga smartphones. Studiens slutsatser är att maskininlärningsmodeller, i synnerhet neuralt nätverk och random forest-algoritmerna, tränade på data från vanliga smartphones, till hög grad kan känna igen en dumpers aktiviteter. Avslutningsvis presenteras en marknadsanalys som bedömer innovationsmöjligheten för en eventuell slutprodukt som hög.
Albert, Florea George, and Filip Weilid. "Deep Learning Models for Human Activity Recognition." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20201.
Full textThe Augmented Multi-party Interaction(AMI) Meeting Corpus database is used to investigate group activity recognition in an office environment. The AMI Meeting Corpus database provides researchers with remote controlled meetings and natural meetings in an office environment; meeting scenario in a four person sized office room. To achieve the group activity recognition video frames and 2-dimensional audio spectrograms were extracted from the AMI database. The video frames were RGB colored images and audio spectrograms had one color channel. The video frames were produced in batches so that temporal features could be evaluated together with the audio spectrogrames. It has been shown that including temporal features both during model training and then predicting the behavior of an activity increases the validation accuracy compared to models that only use spatial features [1]. Deep learning architectures have been implemented to recognize different human activities in the AMI office environment using the extracted data from the AMI database.The Neural Network models were built using the Keras API together with TensorFlow library. There are different types of Neural Network architectures. The architecture types that were investigated in this project were Residual Neural Network, Visual Geometry Group 16, Inception V3 and RCNN(Recurrent Neural Network). ImageNet weights have been used to initialize the weights for the Neural Network base models. ImageNet weights were provided by Keras API and was optimized for each base model[2]. The base models uses ImageNet weights when extracting features from the input data.The feature extraction using ImageNet weights or random weights together with the base models showed promising results. Both the Deep Learning using dense layers and the LSTM spatio-temporal sequence prediction were implemented successfully.
Sabzpoushan, Maryam. "Play to learn : children learning and activity space." Thesis, KTH, Arkitektur, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96485.
Full textGordon, Susan Eve. "Understanding Students Learning Statistics: An Activity Theory Approach." University of Sydney. School of Development and Learning, 1998. http://hdl.handle.net/2123/353.
Full textBooks on the topic "Learning activity"
Ireson, Judith. Learners, learning and educational activity. New York, NY: Routledge, 2008.
Find full textIreson, Judith. Learners, learning and educational activity. New York, NY: Routledge, 2008.
Find full textStevens, Tara. Physical Activity and Student Learning. New York, NY : Routledge, 2019. | Series: Ed psych insights: Routledge, 2019. http://dx.doi.org/10.4324/9780429436567.
Full textSannino, Annalisa, Harry Daniels, and Kris D. Gutierrez, eds. Learning and Expanding with Activity Theory. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511809989.
Full textLi, Xiaoli, Min Wu, Zhenghua Chen, and Le Zhang, eds. Deep Learning for Human Activity Recognition. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0575-8.
Full textHansson, Thomas. Contemporary approaches to activity theory: Interdisciplinary perspectives on human behavior. Hershey, PA: Information Science Reference, 2015.
Find full textFuruno, Setsu. HELP activity guide. Edited by Enrichment Project for Handicapped Infants. 2nd ed. Palo Alto, Calif: VORT Corp., 2005.
Find full textMitchell, Jenna. Learning about the Bible: An activity book. Brigham City, Utah: Walnut Springs Press, LLC, 2010.
Find full textBooks, Priddy. Sticker Activity: Trucks (First Learning Sticker Activity). Tandem Library, 2003.
Find full textBook chapters on the topic "Learning activity"
Podolskiy, Andrey I. "Learning Activity." In Encyclopedia of the Sciences of Learning, 1761–62. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-1428-6_314.
Full textPodolskiy, Andrey. "Activity Theories of Learning." In Encyclopedia of the Sciences of Learning, 83–85. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-1428-6_310.
Full textMiller, Robert. "Theta Activity and Learning." In Cortico-Hippocampal Interplay and the Representation of Contexts in the Brain, 189–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-21732-0_10.
Full textHyndman, Brendon, Matthew Winslade, and Bradley Wright. "Physical Activity and Learning." In Health and Education Interdependence, 179–204. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3959-6_10.
Full textEllis, Robert A., and Peter Goodyear. "Learning in activity systems." In The Education Ecology of Universities, 169–92. Abingdon, Oxon ; New York, NY : Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.4324/9781351135863-9.
Full textJia, Chengcheng, and Yun Fu. "Subspace Learning for Action Recognition." In Human Activity Recognition and Prediction, 49–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27004-3_3.
Full textRintala, Pauli, and Niina Palsio. "Effects of Physical Education Programs on Children with Learning Disabilities." In Adapted Physical Activity, 37–40. Tokyo: Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68272-1_6.
Full textHaworth, Deborah. "Applying Recovery Through Activity in a secure learning disability service." In Discovery Through Activity, 51–54. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003226109-10.
Full textHamid, Raffay. "Classifier Boosting for Human Activity Recognition." In Ensemble Machine Learning, 251–72. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-9326-7_9.
Full textLin, Liang, Dongyu Zhang, Ping Luo, and Wangmeng Zuo. "Human Activity Understanding." In Human Centric Visual Analysis with Deep Learning, 135–56. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2387-4_10.
Full textConference papers on the topic "Learning activity"
"Activity Coordination in Collaborative Learning Environments." In 1st International Workshop on Computer Supported Activity Coordination. SciTePress - Science and and Technology Publications, 2004. http://dx.doi.org/10.5220/0002665902270232.
Full text"Learning virtual project work." In 1st International Workshop on Computer Supported Activity Coordination. SciTePress - Science and and Technology Publications, 2004. http://dx.doi.org/10.5220/0002681500910102.
Full textSacher, Patrick, and Thorsten Gattinger. "LEARNING ACTIVITY PROVIDER." In 14th International Technology, Education and Development Conference. IATED, 2020. http://dx.doi.org/10.21125/inted.2020.1526.
Full text"Ontology and E-Learning." In The 4th International Workshop on Computer Supported Activity Coordination. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0002424400870098.
Full text"Prescribing e-Learning Activities Using Workflow Technologies." In 1st International Workshop on Computer Supported Activity Coordination. SciTePress - Science and and Technology Publications, 2004. http://dx.doi.org/10.5220/0002660500710080.
Full textBočkor Starc, Barbara. "Cooperative Learning, Playing and Physical Activity." In Developing Effective Learning. University of Primorska Press, 2020. http://dx.doi.org/10.26493/978-961-293-002-8.15.
Full text"Activity Recognition using Incremental Learning." In Internet and Multimedia Systems and Applications / 747: Human-Computer Interaction. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.747-035.
Full textGeorgievski, Ilche, Prashant Gupta, and Marco Aiello. "Activity Learning for Intelligent Buildings." In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). IEEE, 2019. http://dx.doi.org/10.1109/uemcon47517.2019.8993060.
Full textHossain, H. M. Sajjad, Nirmalya Roy, and Md Abdullah Al Hafiz Khan. "Active learning enabled activity recognition." In 2016 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 2016. http://dx.doi.org/10.1109/percom.2016.7456524.
Full textTao, Xuehong, and Yuan Miao. "Interest Based Learning Activity Negotiation." In 2008 International Conference on Cyberworlds (CW). IEEE, 2008. http://dx.doi.org/10.1109/cw.2008.104.
Full textReports on the topic "Learning activity"
Osentoski, Sarah, Victoria Manfred, and Sridhar Mahadevan. Learning Hierarchical Models of Activity. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada440281.
Full textShoham, Yoav, and Moshe Tennenholtz. Co-Learning and the Evolution of Social Activity,. Fort Belvoir, VA: Defense Technical Information Center, March 1994. http://dx.doi.org/10.21236/ada325130.
Full textPinchuk, Olga P., Oleksandra M. Sokolyuk, Oleksandr Yu Burov, and Mariya P. Shyshkina. Digital transformation of learning environment: aspect of cognitive activity of students. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3243.
Full textHurwitz, David. An Activity-Based Learning Module for Human Factors in the Introductory Transportation Engineering Course. Portland State University Library, September 2013. http://dx.doi.org/10.15760/trec.48.
Full textMcCann, Michael. Introducing Students to Risk Diversification: Adapting a class activity to the online learning environment. Bristol, UK: The Economics Network, October 2020. http://dx.doi.org/10.53593/n3350a.
Full textFedorenko, Elena H., Vladyslav Ye Velychko, Svitlana O. Omelchenko, and Vladimir I. Zaselskiy. Learning free software using cloud services. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3886.
Full textDeWinter, Alun, Arinola Adefila, and Katherine Wimpenny. Jordan Opportunity for Virtual Innovative Teaching and Learning. International Online Teaching and Learning, with Particular Attention to the Jordanian Case. Coventry University, June 2021. http://dx.doi.org/10.18552/jovital/2021/0001.
Full textRakestraw, D. Resonant Acoustic Characterization of Coins: An Inquiry-Based Learning Activity for Everyone with a Smartphone. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1830948.
Full textMpitsos, George J. Parallel Processing and Learning: Variability and Chaos in Self- Organization of Activity in Groups of Neurons. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada264224.
Full textFreeman, Charles, Phyllis Bell Miller, Caroline Kobia, and Juyoung Lee. What do students really learn from a fashion show? A theoretical approach to a project-based learning activity. Ames: Iowa State University, Digital Repository, November 2015. http://dx.doi.org/10.31274/itaa_proceedings-180814-73.
Full text