Dissertations / Theses on the topic 'Learning activity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Learning activity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Lompscher, Joachim. "Learning strategies : an essential component of learning activity." Universität Potsdam, 1994. http://opus.kobv.de/ubp/volltexte/2005/450/.
Full textSmith, Raymond. "MULTIZOOM ACTIVITY RECOGNITION USING MACHINE LEARNING." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2162.
Full textPh.D.
School of Computer Science
Engineering and Computer Science
Computer Science
Makris, Dimitrios. "Learning an activity-based semantic scene model." Thesis, City University London, 2004. http://eprints.kingston.ac.uk/7781/.
Full textKim, Juho Ph D. Massachusetts Institute of Technology. "Learnersourcing : improving learning with collective learner activity." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101464.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages [199]-213).
Millions of learners today are watching videos on online platforms, such as Khan Academy, YouTube, Coursera, and edX, to take courses and master new skills. But existing video interfaces are not designed to support learning, with limited interactivity and lack of information about learners' engagement and content. Making these improvements requires deep semantic information about video that even state-of-the-art AI techniques cannot fully extract. I take a data-driven approach to address this challenge, using large-scale learning interaction data to dynamically improve video content and interfaces. Specifically, this thesis introduces learnersourcing, a form of crowdsourcing in which learners collectively contribute novel content for future learners while engaging in a meaningful learning experience themselves. I present learnersourcing applications designed for massive open online course videos and how-to tutorial videos, where learners' collective activities 1) highlight points of confusion or importance in a video, 2) extract a solution structure from a tutorial, and 3) improve the navigation experience for future learners. This thesis demonstrates how learnersourcing can enable more interactive, collaborative, and data-driven learning.
by Juho Kim.
Ph. D.
Olnén, Johanna, and Julia Sommarlund. "Activity Recognition Using IoT and Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295603.
Full textInternet of Things-enheter, så som smarta telefoner och klockor, blir numera allt mer tillgängliga och tekniskt avancerade. Eftersom användningen av dessa smarta enheter stadigt ökar, ökar också tillgången till stora mängder data från sensorer i dessa enheter. I detta projekt utvecklade vi ett system som känner igen vissa aktiviteter genom att tillämpa en linjär klassificerande maskininlärningsmodell på en uppsättning data som extraherats från en accelerometer, en sensor i en smart telefon. Datauppsättningen skapades genom att samla in data från en smart telefon medan vi utförde vardagliga aktiviteter, så som promenader, stå stilla, köra bil och åka tunnelbana. Rå accelerometerdata samlades in och gjordes om till datavektorer innehållandes statistiska mått. Den totala datauppsättningen delades sedan upp i 80% träningsdata och 20% testdata. En maskininlärningsalgoritm, i detta fall en supportvektormaskin, introducerades med träningsdatan och klassificerade slutligen testdatan med en precision på över 90%. Därmed uppfylldes vårt uppsatta mål med att bygga en tjänst med en korrekt klassificering på över 90%. Igenkänning av mänsklig aktivitet har ett stort användningsområde, och kan bidra till förbättrade hälsorekommendationer och en mer effektiv kollektivtrafik.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Pang, Jinyong. "Human Activity Recognition Based on Transfer Learning." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7558.
Full textAxelsson, Henrik, and Daniel Wass. "Machine Learning for Activity Recognition of Dumpers." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260256.
Full textByggnadsbranschen har halkat efter andra branscher i produktivitetsökning. Markarbetesprojekt och andra arbeten där dumprar används är inga undantag. Sådana projekt saknar användarvänliga system för att kartlägga maskinutnyttjande och massaflöde. Nuvarande lösningar bygger framförallt på manuellt arbete. Denna studie syftar skapa kännedom kring hur autonoma system för aktivitetsspårning av dumprar kan öka produktiviteten på markarbetesprojekt. Befintliga autonoma lösningar är inte implementerbara på maskinparker med olika fabrikat eller äldre årsmodeller. Denna studie undersöker möjligheten att applicera aktivitetsigenkänning genom maskininlärning baserad på smartphones placerade i förarhytten för en sådan autonom lösning. Tre maskininlärningsalgoritmer (naive Bayes, random forest och backpropagation neuralt nätverk) tränas och testas på data från sensorer tillgängliga i vanliga smartphones. Studiens slutsatser är att maskininlärningsmodeller, i synnerhet neuralt nätverk och random forest-algoritmerna, tränade på data från vanliga smartphones, till hög grad kan känna igen en dumpers aktiviteter. Avslutningsvis presenteras en marknadsanalys som bedömer innovationsmöjligheten för en eventuell slutprodukt som hög.
Albert, Florea George, and Filip Weilid. "Deep Learning Models for Human Activity Recognition." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20201.
Full textThe Augmented Multi-party Interaction(AMI) Meeting Corpus database is used to investigate group activity recognition in an office environment. The AMI Meeting Corpus database provides researchers with remote controlled meetings and natural meetings in an office environment; meeting scenario in a four person sized office room. To achieve the group activity recognition video frames and 2-dimensional audio spectrograms were extracted from the AMI database. The video frames were RGB colored images and audio spectrograms had one color channel. The video frames were produced in batches so that temporal features could be evaluated together with the audio spectrogrames. It has been shown that including temporal features both during model training and then predicting the behavior of an activity increases the validation accuracy compared to models that only use spatial features [1]. Deep learning architectures have been implemented to recognize different human activities in the AMI office environment using the extracted data from the AMI database.The Neural Network models were built using the Keras API together with TensorFlow library. There are different types of Neural Network architectures. The architecture types that were investigated in this project were Residual Neural Network, Visual Geometry Group 16, Inception V3 and RCNN(Recurrent Neural Network). ImageNet weights have been used to initialize the weights for the Neural Network base models. ImageNet weights were provided by Keras API and was optimized for each base model[2]. The base models uses ImageNet weights when extracting features from the input data.The feature extraction using ImageNet weights or random weights together with the base models showed promising results. Both the Deep Learning using dense layers and the LSTM spatio-temporal sequence prediction were implemented successfully.
Sabzpoushan, Maryam. "Play to learn : children learning and activity space." Thesis, KTH, Arkitektur, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96485.
Full textGordon, Susan Eve. "Understanding Students Learning Statistics: An Activity Theory Approach." University of Sydney. School of Development and Learning, 1998. http://hdl.handle.net/2123/353.
Full textLinsell, Chris, and n/a. "Learning algebra in an activity-based mathematics programme." University of Otago. Department of Mathematics & Statistics, 2005. http://adt.otago.ac.nz./public/adt-NZDU20061016.161725.
Full textPijeira, Díaz H. J. (Héctor Javier). "Electrodermal activity and sympathetic arousal during collaborative learning." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526222196.
Full textTiivistelmä Tässä väitöstutkimuksessa tarkastellaan elektrodermaalista aktiivisuutta (EDA) ja tästä johdettua sympaattista vireystilaa ja fysiologisia indeksejä, samanaikaisesti yksilöiden ja yksilöiden välisten kognitiivisten ja affektiivisten prosessien kanssa. Tutkimusaineisto kerättiin yhteisöllisen oppimisen tilanteista, joissa oppilaat työskentelivät kolmen hengen ryhmissä. Ensimmäinen osa aineistosta kerättiin oppilaiden suorittaessa luonnontieteiden alan tehtävää ja toinen kahden fysiikan syventävän kurssin aikana. Aineistoon sisältyi EDA (Empatica® E3- ja E4-rannekkeista), oppimisen mittaukset (alku- ja lopputestit, tehtävien ratkaisut ja kurssikokeet) sekä kyselylomakkeet oppimisen kognitiivisista, affektiivisista ja yhteisöllisen työskentelyn näkökulmista. Tutkimus on raportoitu kolmessa artikkelissa. Tulokset osoittavat, että opiskelijoiden sympaattisen hermoston vireystila oli keskimäärin yli puolet (60 %) luokkatyöskentelystä alhainen, mikä viittaa mahdolliseen rentoutumiseen, osallistumisen puutteeseen tai tylsistymiseen. Ryhmänjäsenet olivat suurimman osan ajasta (≈60-95 %) eri vireystilan tasoilla, mikä voi tarkoittaa, että he suorittivat tehtävää vuorotellen (tehtävän suorittajaa vaihdellen) tai jonkinlaista työnjakoa käyttäen, yhteisöllisen työskentelyn sijaan. Sympaattinen vireystila kurssikokeessa ennusti kokeen arvosanoja. Lisäksi oppilasparien EDA:n samansuuntaisuus korreloi vahvasti oppimistulosten kanssa. Yksilöiden välillä tapahtuvaa sympaattisen vireystilan ”tarttumista” on voinut esiintyä jopa 41 prosentissa todetuista korkean vireystilan intervalleista. Mahdolliset ”tarttumiset” ilmenivät enimmäkseen (71,3%) 1:1 suhteessa, mikä viittaa siihen, että vuorovaikutus yhteisöllisessä oppimisessa näyttäisi tapahtuvan pääasiassa kahden yksilön välillä kaikkien kolmen sijaan. Tulokset tarjoavat ekologisesti validin kuvan opiskelijoiden EDA-reaktioista luokkahuoneessa sekä yksilöllisesti että yhteisöllisesti tarkasteltuna, selventäen samalla kuvaa sympaattisen vireystilan yhteydestä kognitiivisiin ja affektiivisiin prosesseihin. Menetelmällisesti tutkimus kartoittaa psykofysiologisen lähestymistavan mahdollisuuksia yhteisöllisen oppimisen tutkimuksessa. Se esittelee fysiologisia indeksejä, jotka voitaisiin visualisoida oppimisen analytiikan sovelluksissa opiskelijoiden tietoisuuden ja reflektion sekä opettajien pedagogisten käytäntöjen tukemiseksi
Dong, Shuonan. "Unsupervised learning and recognition of physical activity plans." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42195.
Full textIncludes bibliographical references (p. 125-129).
This thesis desires to enable a new kind of interaction between humans and computational agents, such as robots or computers, by allowing the agent to anticipate and adapt to human intent. In the future, more robots may be deployed in situations that require collaboration with humans, such as scientific exploration, search and rescue, hospital assistance, and even domestic care. These situations require robots to work together with humans, as part of a team, rather than as a stand-alone tool. The intent recognition capability is necessary for computational agents to play a more collaborative role in human-robot interactions, moving beyond the standard master-slave relationship of humans and computers today. We provide an innovative capability for recognizing human intent, through statistical plan learning and online recognition. We approach the plan learning problem by employing unsupervised learning to automatically determine the activities in a plan based on training data. The plan activities are described by a mixture of multivariate probability densities. The number of distributions in the mixture used to describe the data is assumed to be given. The training data trajectories are fed again through the activities' density distributions to determine each possible sequence of activities that make up a plan. These activity sequences are then summarized with temporal information in a temporal plan network, which consists of a network of all possible plans. Our approach to plan recognition begins with formulating the temporal plan network as a hidden Markov model. Next, we determine the most likely path using the Viterbi algorithm. Finally, we refer back to the temporal plan network to obtain predicted future activities. Our research presents several innovations:
(cont.) First, we introduce a modified representation of temporal plan networks that incorporates probabilistic information into the state space and temporal representations. Second, we learn plans from actual data, such that the notion of an activity is not arbitrarily or manually defined, but is determined by the characteristics of the data. Third, we develop a recognition algorithm that can perform recognition continuously by making probabilistic updates. Finally, our recognizer not only identifies previously executed activities, but also pre-dicts future activities based on the plan network. We demonstrate the capabilities of our algorithms on motion capture data. Our results show that the plan learning algorithm is able to generate reasonable temporal plan networks, depending on the dimensions of the training data and the recognition resolution used. The plan recognition algorithm is also successful in recognizing the correct activity sequences in the temporal plan network corresponding to the observed test data.
by Shuonan Dong.
S.M.
Hamid, Muhammad Raffay. "Unsupervised Activity Discovery and Characterization for Sensor-Rich Environments." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/14131.
Full textKling, Mattias. "Developing a Source Criticism Learning Activity for a Digital Learning Environment in History." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-118311.
Full textCoupland, Mary. "Learning with new tools." Access electronically, 2004. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20041221.111821/index.html.
Full textParker, Abigail B. "Teaching Envisionment: Activity Settings for Learning to Teach Literature." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1218493014.
Full textZhang, Chenyang. "Human Activity Analysis using Multi-modalities and Deep Learning." Thesis, The City College of New York, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10159927.
Full textWith the successful development of video recording devices and sharing platforms, visual media has become a significant component of everyone's life in the world. To better organize and understand the tremendous amount of visual data, computer vision and machine learning have become the key technologies to resolve such a huge problem. Among the topics in computer vision research, human activity analysis is one of the most challenging and promising areas. Human activity analysis is dedicated to detecting, recognizing, and understanding the context and meaning of human activities in visual media. This dissertation focuses on two aspects in human activity analysis: 1) how to utilize multi-modality approach, including depth sensors and traditional RGB cameras, for human action modeling. 2) How to utilize more advanced machine learning technologies, such as deep learning and sparse coding, to address more sophisticated problems such as attribute learning and automatic video captioning.
To explore the utilization of the depth cameras, we first present a depth camera-based image descriptor called histogram of 3D facets (H3DF) and its utilization in human action and hand gesture recognition and a holistic depth video representation for human actions. To unify both the inputs from depth cameras and RGB cameras, this dissertation first discusses a joint framework to model human affections from both facial expressions and body gestures with a multi-modality fusion framework. Then we present deep learning-based frameworks for human attribute learning and automatic video captioning tasks. Compared to human action detection recognition, automatic video captioning is more challenging because it includes complex language models and visual context. Extensive experiments have also been conducted on several public datasets to demonstrate that our proposed frameworks in this dissertation outperform the state-of-the-art approaches in this research area.
Gentek, Anna. "Activity Recognition Using Supervised Machine Learning and GPS Sensors." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295600.
Full textAtt utföra aktivitetsigenkänning på människor har blivit ett populärt forskningsämne bland datavetare, där flertalet studier rörande människor och deras dagliga rörelsevanor undersökts för många olika syften. Detta är inte förvånande när man ser till de möjligheter och användningsområden som kan tillämpas och utnyttjas tack vare resultaten från dessa system. Detta projekt går ut på att implementera ett system som mha samlad sensordata från mobila enheter, kan bearbeta den och genom s.k övervakad maskininlärning med goda resultat bestämma den aktivitet som utförts. Projektet genomfördes baserat på dataset och egenskaper extraherade från GPS-data. Systemet tränades med olika maskininlärningsalgoritmer genom Python SciKit för att välja den bäst lämpade metoden för detta projekt. Slutligen tillämpade vi majority votemetoden för att säkerställa bästa möjliga noggrannhet i aktivitetsklassificeringsprocessen. Resultatet blev ett system som framgångsrikt kan identifiera aktiviteterna gå, cykla, köra bil samt med ett ytterligare fokus på kollektivtrafikmetoderna buss och tunnelbana, med en noggrannhet på över 90%.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Brown, Jamie Branam, Mary R. Langenbrunner, and Teresa Brooks-Taylor. "Oppression Activity Using the Mechanism of Social Service Learning." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/etsu-works/5867.
Full textBhavaraju, Srilaya. "Using machine learning for analysis of neuronal network activity." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129131.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 75-77).
Analyzing neuronal activity in developing neuronal networks can improve our understanding of neuronal dysfunctions underlying conditions such as Rett syndrome. Two-photon calcium imaging is used to capture neuronal network activity over time. This method produces large sets of images that are typically manually analyzed by skilled neuroscientists. Because this process is both time-consuming and subject to error, discovery of therapies that ameliorate network dysfunction may be slowed. We improve an existing, semi-autonomous machine learning pipeline for two-photon calcium imaging sequence analysis. We introduce to the pipeline neuron detection methods using supervised learning models, heuristic filtering of pixels for signal extraction, and event detection using deconvolution. With these methods, we improve neuron detection performance, alter signal-to-noise ratio of extracted calcium signals, and allow for integration of methods that infer action potential firing underlying these signals.
by Srilaya Bhavaraju.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Greenall, John Patrick. "High-level activity learning and recognition in structured environments." Thesis, University of Leeds, 2012. http://etheses.whiterose.ac.uk/3231/.
Full textNguyen, Dieu My Thanh. "OLFACTORY LEARNING AND BRAIN ACTIVITY IN NOVOMESSOR COCKERELLI ANTS." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/613353.
Full textGoutham, Mithun. "Machine learning based user activity prediction for smart homes." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595493258565743.
Full textSolis, John D. "The relationship between preservice teachers' social learning style preferences and learning activity role choices." Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1225152311&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textRambusch, Jana. "Embodiment and situated learning." Thesis, University of Skövde, School of Humanities and Informatics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-904.
Full textCognition has for a long time been viewed as a process that can be described in terms of computational symbol manipulation, i.e. a process that takes place inside people’s heads and is largely unaffected by contextual aspects. In recent years, however, there has been a considerable change in the way researchers look at and study human cognition. These changes also have far-reaching implications for education and educational research. Situated learning is a theoretical framework in which sociocultural aspects of cognition and learning are strongly emphasised, that is, the context in which learning takes place is an important part of learning activity. The concept of activity is central to situated learning theories, but activity has been considered an exclusively sociocultural process in which the body only plays a minor role. In embodied cognition research, on the other hand, there is an increasing awareness that mind and body are inextricably intertwined and cannot be viewed in isolation. Findings in cognitive neuroscience provide additional evidence that cognition is tightly linked to perception and action. The aim of this thesis has been to investigate the role of the body in situated learning activity by integrating these different perspectives on cognition and learning. The analysis suggests that, like individual human conceptualization and thought, situated learning is in fact deeply rooted in bodily activity. In social interactions the body provides individuals with a similar perspective on the world, it functions as a means of signalling to others what cannot (yet) be expressed verbally, and it serves as a resonance mechanism in the understanding of others.
Pietsch, James Roderick. "Collaborative learning in mathematics." University of Sydney, 2005. http://hdl.handle.net/2123/1088.
Full textThis study looked at the implementation of a collaborative learning model at two schools in Sydney designed to realise the principles recommended by reform documents such as the Principles and Standards for School Mathematics (NCTM, 2000) and policy documents including Numeracy, A Priority for All (DETYA, 2000). A total of 158 year seven and year eight students ranging in age from 12 to 15 years old from two schools participated in the study. In all, seven classroom teachers participated in the study each completing two topics using the collaborative learning model. Four research questions were the focus of the current study. Three research questions were drawn from eight principles identified in the literature regarding what constitutes effective mathematics learning. These questions related to the nature of collaboration evident in each classroom, the level of motivation and self-regulation displayed by students in the different types of classrooms and the relationship between learning mathematics within the collaborative learning model and real-world mathematics. A final research question examined the degree to which the concerns of teachers relating to preparing students for examinations are met within the collaborative learning model. Several different data collection strategies were adopted to develop a picture of the different forms of activity evident in each classroom and the changes that took place in each classroom during and after the implementation of the collaborative learning model. These included classroom observations, interviews with student and teacher participants, questionnaires and obtaining test results. Both exploratory and confirmatory factor analysis were used to reduce the data collected. Factor scores and test results were compared using t-tests, ANOVAs and Mann Whitney nonparametric tests. Data collected from interviews and classroom observations were analysed using a grounded approach beginning with the open coding of phenomena. Leont’ev’s theoretical approach to activity systems (1972; 1978) was then used to describe the changing nature of classroom activity with the introduction of the collaborative learning model. Within the collaborative classrooms there were a greater number of mathematical voices participating in classroom discussions, a breaking down of traditional roles held by teachers and students, and dominant patterns of collaboration evident in each classroom reflecting pre-existing cultural ways of doing. Furthermore, there was some quantitative evidence suggesting that student levels of critical thinking, self-regulation and help seeking increased and students were also observed regulating their own learning as well as the learning of others. Classroom practice was also embedded in the cultural practice of preparing topic tests, enabling students to use mathematics within the context of a work group producing a shared outcome. Finally, there was quantitative evidence that students in some of the collaborative classes did not perform as well as students in traditional classrooms on topic tests. Comments from students and teachers, however, suggested that for some students the collaborative learning model enabled them to learn more effectively, although other students were frustrated by the greater freedom and lack of direction. Future research could investigate the effectiveness of strategies to overcome this frustration and the relationship between different types of collaboration and developing mathematical understanding.
Bygrave, Patricia, and n/a. "Music as a cognitive developing activity : implications for learning and for the learning disabled child." University of Canberra. Education, 1985. http://erl.canberra.edu.au./public/adt-AUC20060622.143654.
Full textMalmberg, J. (Jonna). "Tracing the process of self-regulated learning – students’ strategic activity in g/nStudy learning environment." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526204703.
Full textTiivistelmä Tässä väitöskirjassa tutkitaan oppilaiden itsesäätöisen ja strategisen oppimisen ilmenemistä oppimisprosessin aikana. Tutkimuksessa hyödynnetään g/nStudy- oppimisympäristöä, jonka avulla on mahdollista tukea ja jäljittää oppimisen strategista toimintaa. g/nStudy-oppimisympäristö tallentaa lokidataa, joka on tarkkaa ajallista informaatiota siitä toiminnasta, jota oppilas tekee työskentelynsä aikana. Toisin sanoen, lokidatasta on mahdollista jäljittää ne tiedot, jotka reflektoivat strategista – ja itsesäätöistä oppimista. Erityisenä mielenkiinnon kohteena oli selvittää miten lokidatasta voi löytää strategisia oppimisen toimintamalleja, ja miten nämä strategiset oppimisen toimintamallit vaihtelevat oppilaiden, oppilasryhmien ja erilaisten oppimisen tilanteiden aikana. Väitöstutkimus muodostuu kolmesta erillisestä tutkimusaineistosta. Jokaisessa kolmessa aineistossa on hyödynnetty g/nStudy-teknologian mahdollisuuksia tukea ja jäljittää itsesäätöistä oppimista. Tutkimusaineiston analyysissä hyödynnetään mikroanalyyttista lähestymistapaa sekä laadullista tutkimusotetta. Tutkimuksen analyyttinen lähestymistapa antaa mahdollisuuden ymmärtää itsesäätöisen- ja strategisen oppimisen ilmenemistä aidossa oppimistilanteessa. Tutkimustulokset osoittavat, että oppimisympäristöön sisällytettyjä teknologisia työkaluja voidaan käyttää tukemaan itsesäätöistä ja strategista toimintaa. Sen lisäksi samoja työkaluja voidaan käyttää myös menetelmällisenä välineenä tutkittaessa itsesäätöistä – ja strategista toimintaa erilaisissa oppimistilanteissa. Tutkimus -tulokset osoittavat, että oppimisen strategiset toimintamallit vaihtelivat oppilaiden – ja oppimistilanteiden välillä. Oppimisen strategisissa toimintamalleissa oli myös laadullisia eroja sen suhteen, miten usein ne ilmenivät oppimisprosessin aikana ja mistä strategisista toiminnoista ne koostuivat. Johtopäätöksenä voi todeta, että lokidatan käyttäminen tutkimusmenetelmänä edesauttaa paljastamaan opiskelun strategisia toimintamalleja oppilaiden – ja oppilasryhmien välillä. Tutkimuksen perusteella voidaan todeta, että strategiset toimintamallit voivat olla hyvinkin monimuotoisia. On tärkeää tunnistaa, missä tilanteissa ja milloin näitä toimintamalleja käytetään ja erityisesti mikä on niiden vaikutus oppimisen laatuun
Li, Huiyong. "Enhancing Students' Self-Direction Skill with Learning and Physical Activity Data." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263776.
Full textChung, Chak. "The implementation of the activity approach in Hong Kong." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18540296.
Full textMahdaviani, Maryam. "Semi-supervised and active training of conditional random fields for activity recognition." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/346.
Full textXie, Xiaohui 1972. "Spike-based learning rules and stabilization of persistent neural activity." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86625.
Full textFernando, Kayla Dana. "Sex Differences in Serotonin (5-HT) Activity During Safety Learning." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108020.
Full textPatients with posttraumatic stress disorder (PTSD) often show impaired ability to discriminate between “danger” and “safety” cues. Women are more than twice as likely to be diagnosed with PTSD as compared to men; however, translational research has largely relied on the use of male subjects despite evidence of sex differences in fear-motivated behaviors. Serotonergic activity, originating in the dorsal raphe nucleus (DRN) of the central nervous system (CNS), has been found to modulate fear discrimination in males and may contribute to sex differences observed in a Pavlovian fear discrimination paradigm. In this study, male and intact female Sprague-Dawley rats were exposed to fear conditioning with (CS+/CS-) or without (CS+) a safe conditioned stimulus, then subsequently sacrificed for immunohistochemical analysis of serotonergic activity via quantification of tryptophan hydroxylase (TPH) and Fos in the DRN. Females exhibited more rapid and robust discrimination between the CS+ danger cue and CS- safety cue as compared to males. Regardless of condition, females had more double-labeled TPH+Fos cells compared to males, but males had larger variation in TPH+Fos expression compared to females. A parabolic function for TPH+Fos counts predicted fear discrimination in males, but not females, reinforcing the view that serotonin is a modulator of safety-related behavior in males
Thesis (BS) — Boston College, 2018
Submitted to: Boston College. College of Arts and Sciences
Discipline: Arts and Sciences Honors Program
Discipline: Biology
Bronkhorst, Joseph Victor. "Work-integrated learning in Civil Engineering: an activity theoretical study." Thesis, Cape Peninsula University of Technology, 2013. http://hdl.handle.net/20.500.11838/1979.
Full textThe aim of this research is to present recommendations for knowledge and practice relations between Further Education and Training (FET) colleges and Civil Engineering (CE) workplaces, and to present a work-integrated learning (WIL) model that could assist with the preparation of CE students for the workplace. Recently, FET colleges have been under the spotlight in terms of student preparedness for the CE workplace. Many questions have been posed by students studying at FET colleges and by CE workplace supervisors in respect of whether the current CE curriculum adequately prepares students for the workplace, or whether the curriculum has become obsolete in terms of knowledge and practice relations. The CE industry is of the opinion that students are insufficiently prepared in terms of skills and knowledge. In the light of this uncertainty, I researched the learning taking place at FET colleges and CE workplaces. I examined similarities and differences in the learning environment of the students. The research provides a theoretical overview of Activity Theory (AT) and its principle of contradictions. The lens of AT and its contradictions provide a versatile tool to enquire into various aspects of WIL, taking into account individual and institutional perspectives, as well as changes over time. Activity Theory and its principle of contradictions provide insights into how transformation may occur within Activity Systems (ASs) in a CE context. The study was conducted over a number of years with participants from three ASs, namely, the classroom, workshop/college yard and workplace. During the research, this study proposed a conceptual framework, rooted in AT, and substantiated by empirical evidence, for describing and analysing the learning taking place in the FET college sector and within the CE workplace environment. The analysis focuses on the perceptions of learning taking place in the ASs. Results reveal a knowledge and practice divide, mediated by AS elements of mediating artefacts, object, subject, division of labour, community and rules. Through a particular focus on the contradictions of the elements of an AS which occur, the objective for this study was to determine ‘knowledge and practice relations’. The components of knowledge and practice are extremely isolated, and by bringing the argument and the empirical findings together, the findings propose: Links between knowledge(‘the classroom’) and practice(‘the workplace’) The surfacing of the disconnect between knowledge and practice between the FET college sector and the CE workplace supports the idea of establishing links between these two sectors. This collaboration could be the turning point in better preparing students for the workplace. Policy formulation and implementation The need for policy review to enhance the integration of knowledge and practice relations in the sector has become apparent. Colleges are expected to undergo a radical transformation and to make major contributions to policy. However, these institutions are new and fragile, and are based on historically weak predecessors. Much of the reform process is oblivious of the connections between college and workplace. The research has established that both CE industries and FET colleges should ensure that they increase their involvement with and participation in the provision of adequately preparing students for the workplace in the Western Cape Province.
Montoro, Sanjosé Carlos Rubin. "The language learning activity of individual learners using online tasks." Thesis, Open University, 2013. http://oro.open.ac.uk/50081/.
Full textSchott, Alex Hoobie. "Teaching and learning in technical theater: activity, composition and embodiment." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/2627.
Full textKaykayoglu, Ediz Lutfu. "Cultural Intelligence and Student Activity in a Learning Management System." Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent157284718604878.
Full textPackman, Jill. "Group activity therapy with learning disabled preadolescents exhibiting behavior problems." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3326/.
Full textIgarashi, H. "The development of professional judgement capacity through activity led learning." Thesis, Coventry University, 2015. http://curve.coventry.ac.uk/open/items/9245a038-ced4-4574-9c6e-02f69f802816/1.
Full textAgnér, Christian, and Anneli Blomqvist. "Evaluating Stress through Machine Learning based on Brain Activity Data." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214709.
Full textOpushnyev, Serhiy. "Neuronal growth patterns in states of learning and activity blockade." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/61075.
Full textMedicine, Faculty of
Graduate
Blandon, Alondra Marcela. "Incorporating multicultural education criteria into Project Learning Tree curricula." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3285.
Full textTrent, John Gilbert. "Learning Cantonese in the community an exploration of the role of social activity in language learning /." Click to view the E-thesis via HKUTO, 2003. http://sunzi.lib.hku.hk/hkuto/record/B31945338.
Full textTrent, John. "Learning Cantonese in the community: an exploration of the role of social activity in language learning." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B31945338.
Full textWorkman, Gayle Jean. "Seniors Learning Sports: A Qualitative Inquiry Regarding the Meanings in Learning and Participating in Physical Activity /." The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487933245537139.
Full textZhu, Fan Frank, and 朱凡. "Exploring cortical activity during implicit and explicit processes in motor learning." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45588892.
Full textKheir, Abadi Maryam. "The development of a new systematic method based on activity systems that analyses the activity of learning programming." Thesis, Kingston University, 2012. http://eprints.kingston.ac.uk/24602/.
Full textRodríguez, Pérez Raquel [Verfasser]. "Machine Learning Methodologies for Interpretable Compound Activity Predictions / Raquel Rodríguez Pérez." Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1207923451/34.
Full textNg, Yick-mui Emily, and 吳奕梅. "A case study of activity learning in secondary school business subjects." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30290338.
Full text