Academic literature on the topic 'Learning on graphs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Learning on graphs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Learning on graphs"

1

Vitale, F. "FAST LEARNING ON GRAPHS." Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/155500.

Full text
Abstract:
We carry out a systematic study of classification problems on networked data, presenting novel techniques with good performance both in theory and in practice. We assess the power of node classification based on class-linkage information only. In particular, we propose four new algorithms that exploit the homiphilic bias (linked entities tend to belong to the same class) in different ways. The set of the algorithms we present covers diverse practical needs: some of them operate in an active transductive setting and others in an on-line transductive setting. A third group works within
APA, Harvard, Vancouver, ISO, and other styles
2

Irniger, Christophe-André. "Graph matching filtering databases of graphs using machine learning techniques." Berlin Aka, 2005. http://deposit.ddb.de/cgi-bin/dokserv?id=2677754&prov=M&dok_var=1&dok_ext=htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simonovsky, Martin. "Deep learning on attributed graphs." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1133/document.

Full text
Abstract:
Le graphe est un concept puissant pour la représentation des relations entre des paires d'entités. Les données ayant une structure de graphes sous-jacente peuvent être trouvées dans de nombreuses disciplines, décrivant des composés chimiques, des surfaces des modèles tridimensionnels, des interactions sociales ou des bases de connaissance, pour n'en nommer que quelques-unes. L'apprentissage profond (DL) a accompli des avancées significatives dans une variété de tâches d'apprentissage automatique au cours des dernières années, particulièrement lorsque les données sont structurées sur une grille
APA, Harvard, Vancouver, ISO, and other styles
4

Rosar, Kós Lassance Carlos Eduardo. "Graphs for deep learning representations." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0204.

Full text
Abstract:
Ces dernières années, les méthodes d'apprentissage profond ont atteint l'état de l'art dans une vaste gamme de tâches d'apprentissage automatique, y compris la classification d'images et la traduction automatique. Ces architectures sont assemblées pour résoudre des tâches d'apprentissage automatique de bout en bout. Afin d'atteindre des performances de haut niveau, ces architectures nécessitent souvent d'un très grand nombre de paramètres. Les conséquences indésirables sont multiples, et pour y remédier, il est souhaitable de pouvoir comprendre ce qui se passe à l'intérieur des architectures d
APA, Harvard, Vancouver, ISO, and other styles
5

Ghiasnezhad, Omran Pouya. "Rule Learning in Knowledge Graphs." Thesis, Griffith University, 2018. http://hdl.handle.net/10072/382680.

Full text
Abstract:
With recent advancements in knowledge extraction and knowledge management systems, an enormous number of knowledge bases have been constructed, such as YAGO, and Wikidata. These automatically built knowledge bases which contain millions of entities and their relations have been stored in graph-based schemas, and thus are usually referred to as knowledge graphs (KGs). Since KGs have been built based on the limited available data, they are far from complete. However, learning frequent patterns in the form of logical rules from these incomplete KGs has two main advantages. First, by applying the
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Shuangfei. "Deep Representation Learning on Labeled Graphs." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96596.

Full text
Abstract:
We introduce recurrent collective classification (RCC), a variant of ICA analogous to recurrent neural network prediction. RCC accommodates any differentiable local classifier and relational feature functions. We provide gradient-based strategies for optimizing over model parameters to more directly minimize the loss function. In our experiments, this direct loss minimization translates to improved accuracy and robustness on real network data. We demonstrate the robustness of RCC in settings where local classification is very noisy, settings that are particularly challenging for ICA. As a new
APA, Harvard, Vancouver, ISO, and other styles
7

Rommedahl, David, and Martin Lindström. "Learning Sparse Graphs for Data Prediction." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295623.

Full text
Abstract:
Graph structures can often be used to describecomplex data sets. In many applications, the graph structureis not known but must be inferred from data. Furthermore, realworld data is often naturally described by sparse graphs. Inthis project, we have aimed at recreating the results describedin previous work, namely to learn a graph that can be usedfor prediction using an ℓ1-penalised LASSO approach. We alsopropose different methods for learning and evaluating the graph. We have evaluated the methods on synthetic data and real-worldSwedish temperature data. The results show that we are unableto
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Keyulu. "Graph structures, random walks, and all that : learning graphs with jumping knowledge networks." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121660.

Full text
Abstract:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019<br>Cataloged from student-submitted PDF version of thesis.<br>Includes bibliographical references (pages 51-54).<br>Graph representation learning aims to extract high-level features from the graph structures and node features, in order to make predictions about the nodes and the graphs. Applications include predicting chemical prope
APA, Harvard, Vancouver, ISO, and other styles
9

Freeman, Guy. "Learning and predicting with chain event graphs." Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/4529/.

Full text
Abstract:
Graphical models provide a very promising avenue for making sense of large, complex datasets. The most popular graphical models in use at the moment are Bayesian networks (BNs). This thesis shows, however, they are not always ideal factorisations of a system. Instead, I advocate for the use of a relatively new graphical model, the chain event graph (CEG), that is based on event trees. Event trees directly represent graphically the event space of a system. Chain event graphs reduce their potentially huge dimensionality by taking into account identical probability distributions on some of the ev
APA, Harvard, Vancouver, ISO, and other styles
10

Pasteris, S. U. "Efficient algorithms for online learning over graphs." Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1516210/.

Full text
Abstract:
In this thesis we consider the problem of online learning with labelled graphs, in particular designing algorithms that can perform this problem quickly and with low memory requirements. We consider the tasks of Classification (in which we are asked to predict the labels of vertices) and Similarity Prediction (in which we are asked to predict whether two given vertices have the same label). The first half of the thesis considers non- probabilistic online learning, where there is no probability distribution on the labelling and we bound the number of mistakes of an algorithm by a function of th
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!