Academic literature on the topic 'Learning Workflows'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Learning Workflows.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Learning Workflows"
Silva Junior, Daniel, Esther Pacitti, Aline Paes, and Daniel de Oliveira. "Provenance-and machine learning-based recommendation of parameter values in scientific workflows." PeerJ Computer Science 7 (July 5, 2021): e606. http://dx.doi.org/10.7717/peerj-cs.606.
Full textDeelman, Ewa, Anirban Mandal, Ming Jiang, and Rizos Sakellariou. "The role of machine learning in scientific workflows." International Journal of High Performance Computing Applications 33, no. 6 (2019): 1128–39. http://dx.doi.org/10.1177/1094342019852127.
Full textNguyen, P., M. Hilario, and A. Kalousis. "Using Meta-mining to Support Data Mining Workflow Planning and Optimization." Journal of Artificial Intelligence Research 51 (November 29, 2014): 605–44. http://dx.doi.org/10.1613/jair.4377.
Full textKathryn Nichols Hess, Amanda. "Web tutorials workflows." New Library World 115, no. 3/4 (2014): 87–101. http://dx.doi.org/10.1108/nlw-11-2013-0087.
Full textCantini, Riccardo, Fabrizio Marozzo, Alessio Orsino, Domenico Talia, and Paolo Trunfio. "Exploiting Machine Learning For Improving In-Memory Execution of Data-Intensive Workflows on Parallel Machines." Future Internet 13, no. 5 (2021): 121. http://dx.doi.org/10.3390/fi13050121.
Full textSuccar, Bilal, and Willy Sher. "A Competency Knowledge-Base for BIM Learning." Australasian Journal of Construction Economics and Building - Conference Series 2, no. 2 (2014): 1. http://dx.doi.org/10.5130/ajceb-cs.v2i2.3883.
Full textWeigel, Tobias, Ulrich Schwardmann, Jens Klump, Sofiane Bendoukha, and Robert Quick. "Making Data and Workflows Findable for Machines." Data Intelligence 2, no. 1-2 (2020): 40–46. http://dx.doi.org/10.1162/dint_a_00026.
Full textAnjum, Samreen, Ambika Verma, Brandon Dang, and Danna Gurari. "Exploring the Use of Deep Learning with Crowdsourcing to Annotate Images." Human Computation 8, no. 2 (2021): 76–106. http://dx.doi.org/10.15346/hc.v8i2.121.
Full textHa, Thang N., Kurt J. Marfurt, Bradley C. Wallet, and Bryce Hutchinson. "Pitfalls and implementation of data conditioning, attribute analysis, and self-organizing maps to 2D data: Application to the Exmouth Plateau, North Carnarvon Basin, Australia." Interpretation 7, no. 3 (2019): SG23—SG42. http://dx.doi.org/10.1190/int-2018-0248.1.
Full textAida, Saori, Junpei Okugawa, Serena Fujisaka, Tomonari Kasai, Hiroyuki Kameda, and Tomoyasu Sugiyama. "Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks." Biomolecules 10, no. 6 (2020): 931. http://dx.doi.org/10.3390/biom10060931.
Full textDissertations / Theses on the topic "Learning Workflows"
Ouari, Salim. "Adaptation à la volée de situations d'apprentissage modélisées conformément à un langage de modélisation pédagogique." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00680028.
Full textParisi, Luca. "A Knowledge Flow as a Software Product Line." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12217/.
Full textKlinga, Peter. "Transforming Corporate Learning using Automation and Artificial Intelligence : An exploratory case study for adopting automation and AI within Corporate Learning at financial services companies." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279570.
Full textMaita, Ana Rocío Cárdenas. "Um estudo da aplicação de técnicas de inteligência computacional e de aprendizado em máquina de mineração de processos de negócio." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-22012016-155157/.
Full textSalvucci, Enrico. "MLOps - Standardizing the Machine Learning Workflow." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23645/.
Full textAslan, Serdar. "Digital Educational Games: Methodologies for Development and Software Quality." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73368.
Full textCao, Bingfei. "Augmenting the software testing workflow with machine learning." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119752.
Full textNordin, Alexander Friedrich. "End to end machine learning workflow using automation tools." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119776.
Full textKiaian, Mousavy Sayyed Ali. "A learning based workflow scheduling approach on volatile cloud resources." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282528.
Full textRabenius, Michaela. "Deep Learning-based Lung Triage for Streamlining the Workflow of Radiologists." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160537.
Full textBooks on the topic "Learning Workflows"
Machine Learning in Production: Developing and Optimizing Data Science Workflows and Applications (Addison-Wesley Data & Analytics Series). Addison-Wesley Professional, 2019.
Find full textInnovative Performance Support Tools And Strategies For Learning In The Workflow. McGraw-Hill, 2010.
Find full textElsevier. SimChart for the Medical Office: Learning the Medical Office Workflow - 2018 Edition. Elsevier - Health Sciences Division, 2017.
Find full textElsevier. SimChart for the Medical Office: Learning the Medical Office Workflow - 2020 Edition. Elsevier - Health Sciences Division, 2020.
Find full textElsevier. SimChart for the Medical Office: Learning the Medical Office Workflow - 2017 Edition. Elsevier - Health Sciences Division, 2016.
Find full textElsevier. SimChart for the Medical Office: Learning the Medical Office Workflow - 2019 Edition. Elsevier - Health Sciences Division, 2018.
Find full textPetchey, Owen L., Andrew P. Beckerman, Natalie Cooper, and Dylan Z. Childs. Insights from Data with R. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198849810.001.0001.
Full textBook chapters on the topic "Learning Workflows"
Ma, Jun, Erin Shaw, and Jihie Kim. "Computational Workflows for Assessing Student Learning." In Intelligent Tutoring Systems. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13437-1_19.
Full textStriewe, Michael. "Lean and Agile Assessment Workflows." In Agile and Lean Concepts for Teaching and Learning. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2751-3_10.
Full textKrause, Thomas, Bruno G. N. Andrade, Haithem Afli, Haiying Wang, Huiru Zheng, and Matthias L. Hemmje. "Understanding the Role of (Advanced) Machine Learning in Metagenomic Workflows." In Advanced Visual Interfaces. Supporting Artificial Intelligence and Big Data Applications. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68007-7_4.
Full textMonge, David A., Matĕj Holec, Filip Z̆elezný, and Carlos García Garino. "Ensemble Learning of Run-Time Prediction Models for Data-Intensive Scientific Workflows." In Communications in Computer and Information Science. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45483-1_7.
Full textJiang, Xinzhao, Wei Kong, Xin Jin, and Jian Shen. "RETRACTED CHAPTER: A Cooperative Placement Method for Machine Learning Workflows and Meteorological Big Data Security Protection in Cloud Computing." In Machine Learning for Cyber Security. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30619-9_8.
Full textJiang, Xinzhao, Wei Kong, Xin Jin, and Jian Shen. "Retraction Note to: A Cooperative Placement Method for Machine Learning Workflows and Meteorological Big Data Security Protection in Cloud Computing." In Machine Learning for Cyber Security. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30619-9_28.
Full textYoon, GeumSeong, Jungsu Han, Seunghyung Lee, and JongWon Kim. "DevOps Portal Design for SmartX AI Cluster Employing Cloud-Native Machine Learning Workflows." In Advances in Internet, Data and Web Technologies. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39746-3_54.
Full textKargl, Michaela, Peter Regitnig, Heimo Müller, and Andreas Holzinger. "Towards a Better Understanding of the Workflows: Modeling Pathology Processes in View of Future AI Integration." In Artificial Intelligence and Machine Learning for Digital Pathology. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50402-1_7.
Full textSinke, Yuliya, Sebastian Gatz, Martin Tamke, and Mette Ramsgaard Thomsen. "Machine Learning for Fabrication of Graded Knitted Membranes." In Proceedings of the 2020 DigitalFUTURES. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4400-6_29.
Full textManthey, Robert, Robert Herms, Marc Ritter, Michael Storz, and Maximilian Eibl. "A Support Framework for Automated Video and Multimedia Workflows for Production and Archive." In Human Interface and the Management of Information. Information and Interaction for Learning, Culture, Collaboration and Business,. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39226-9_37.
Full textConference papers on the topic "Learning Workflows"
MacGregor, L., N. Brown, A. Roubickova, I. Lampaki, J. Berrizbeitia, and M. Ellis. "Streamlining Petrophysical Workflows With Machine Learning." In First EAGE/PESGB Workshop Machine Learning. EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201803027.
Full textMacGregor, L., R. Keirstead, N. Brown, et al. "Streamlining Petrophysical Workflows With Machine Learning." In EAGE Conference on Reservoir Geoscience. European Association of Geoscientists & Engineers, 2018. http://dx.doi.org/10.3997/2214-4609.201803241.
Full textRamcharitar, Kamlesh, and Arti Kandice Ramdhanie. "Using Machine Learning Methods to Identify Reservoir Compartmentalization in Mature Oilfields from Legacy Production Data." In SPE Trinidad and Tobago Section Energy Resources Conference. SPE, 2021. http://dx.doi.org/10.2118/200979-ms.
Full textAhmed, Ishtiaq, Shiyong Lu, Changxin Bai, and Fahima Amin Bhuyan. "Diagnosis Recommendation Using Machine Learning Scientific Workflows." In 2018 IEEE International Congress on Big Data (BigData Congress). IEEE, 2018. http://dx.doi.org/10.1109/bigdatacongress.2018.00018.
Full textAlberti, Michele, Vinaychandran Pondenkandath, Lars Vogtlin, Marcel Wursch, Rolf Ingold, and Marcus Liwicki. "Improving Reproducible Deep Learning Workflows with DeepDIVA." In 2019 6th Swiss Conference on Data Science (SDS). IEEE, 2019. http://dx.doi.org/10.1109/sds.2019.00-14.
Full textKren, Tomas, Martin Pilat, and Roman Neruda. "Multi-objective evolution of machine learning workflows." In 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017. http://dx.doi.org/10.1109/ssci.2017.8285357.
Full textYenugu, M. "Leveraging Machine Learning to Improve Subsurface Interpretation Workflows." In First EAGE Conference on Machine Learning in Americas. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202084022.
Full textPeskova, Klara, and Roman Neruda. "Hyperparameters Search Methods for Machine Learning Linear Workflows." In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. http://dx.doi.org/10.1109/icmla.2019.00199.
Full textLimbeck, J., M. Araya, G. Joosten, A. Eales, P. Gelderblom, and D. Hohl. "Machine Learning Based Workflows in Exploration and Production." In 79th EAGE Conference and Exhibition 2017 - Workshops. EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701656.
Full textChahal, Dheeraj, Manju Ramesh, Ravi Ojha, and Rekha Singhal. "High Performance Serverless Architecture for Deep Learning Workflows." In 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE, 2021. http://dx.doi.org/10.1109/ccgrid51090.2021.00096.
Full textReports on the topic "Learning Workflows"
Gupta, Ragini. Deploying Machine Learning Workflows into HPC environment. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1647199.
Full textSalter, R., Quyen Dong, Cody Coleman, et al. Data Lake Ecosystem Workflow. Engineer Research and Development Center (U.S.), 2021. http://dx.doi.org/10.21079/11681/40203.
Full textQi, Fei, Zhaohui Xia, Gaoyang Tang, et al. A Graph-based Evolutionary Algorithm for Automated Machine Learning. Web of Open Science, 2020. http://dx.doi.org/10.37686/ser.v1i2.77.
Full textGriffin, Andrew, Sean Griffin, Kristofer Lasko, et al. Evaluation of automated feature extraction algorithms using high-resolution satellite imagery across a rural-urban gradient in two unique cities in developing countries. Engineer Research and Development Center (U.S.), 2021. http://dx.doi.org/10.21079/11681/40182.
Full textDownard, Alicia, Stephen Semmens, and Bryant Robbins. Automated characterization of ridge-swale patterns along the Mississippi River. Engineer Research and Development Center (U.S.), 2021. http://dx.doi.org/10.21079/11681/40439.
Full textde Caritat, Patrice, Brent McInnes, and Stephen Rowins. Towards a heavy mineral map of the Australian continent: a feasibility study. Geoscience Australia, 2020. http://dx.doi.org/10.11636/record.2020.031.
Full text