Journal articles on the topic 'Learning Workflows'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Learning Workflows.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Silva Junior, Daniel, Esther Pacitti, Aline Paes, and Daniel de Oliveira. "Provenance-and machine learning-based recommendation of parameter values in scientific workflows." PeerJ Computer Science 7 (July 5, 2021): e606. http://dx.doi.org/10.7717/peerj-cs.606.
Full textDeelman, Ewa, Anirban Mandal, Ming Jiang, and Rizos Sakellariou. "The role of machine learning in scientific workflows." International Journal of High Performance Computing Applications 33, no. 6 (2019): 1128–39. http://dx.doi.org/10.1177/1094342019852127.
Full textNguyen, P., M. Hilario, and A. Kalousis. "Using Meta-mining to Support Data Mining Workflow Planning and Optimization." Journal of Artificial Intelligence Research 51 (November 29, 2014): 605–44. http://dx.doi.org/10.1613/jair.4377.
Full textKathryn Nichols Hess, Amanda. "Web tutorials workflows." New Library World 115, no. 3/4 (2014): 87–101. http://dx.doi.org/10.1108/nlw-11-2013-0087.
Full textCantini, Riccardo, Fabrizio Marozzo, Alessio Orsino, Domenico Talia, and Paolo Trunfio. "Exploiting Machine Learning For Improving In-Memory Execution of Data-Intensive Workflows on Parallel Machines." Future Internet 13, no. 5 (2021): 121. http://dx.doi.org/10.3390/fi13050121.
Full textSuccar, Bilal, and Willy Sher. "A Competency Knowledge-Base for BIM Learning." Australasian Journal of Construction Economics and Building - Conference Series 2, no. 2 (2014): 1. http://dx.doi.org/10.5130/ajceb-cs.v2i2.3883.
Full textWeigel, Tobias, Ulrich Schwardmann, Jens Klump, Sofiane Bendoukha, and Robert Quick. "Making Data and Workflows Findable for Machines." Data Intelligence 2, no. 1-2 (2020): 40–46. http://dx.doi.org/10.1162/dint_a_00026.
Full textAnjum, Samreen, Ambika Verma, Brandon Dang, and Danna Gurari. "Exploring the Use of Deep Learning with Crowdsourcing to Annotate Images." Human Computation 8, no. 2 (2021): 76–106. http://dx.doi.org/10.15346/hc.v8i2.121.
Full textHa, Thang N., Kurt J. Marfurt, Bradley C. Wallet, and Bryce Hutchinson. "Pitfalls and implementation of data conditioning, attribute analysis, and self-organizing maps to 2D data: Application to the Exmouth Plateau, North Carnarvon Basin, Australia." Interpretation 7, no. 3 (2019): SG23—SG42. http://dx.doi.org/10.1190/int-2018-0248.1.
Full textAida, Saori, Junpei Okugawa, Serena Fujisaka, Tomonari Kasai, Hiroyuki Kameda, and Tomoyasu Sugiyama. "Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks." Biomolecules 10, no. 6 (2020): 931. http://dx.doi.org/10.3390/biom10060931.
Full textSandhu, Sahil, Anthony L. Lin, Nathan Brajer, et al. "Integrating a Machine Learning System Into Clinical Workflows: Qualitative Study." Journal of Medical Internet Research 22, no. 11 (2020): e22421. http://dx.doi.org/10.2196/22421.
Full textVan Pham, Vuong, Ebrahim Fathi, and Fatemeh Belyadi. "New Hybrid Approach for Developing Automated Machine Learning Workflows: A Real Case Application in Evaluation of Marcellus Shale Gas Production." Fuels 2, no. 3 (2021): 286–303. http://dx.doi.org/10.3390/fuels2030017.
Full textCai, Jiazhen, Xuan Chu, Kun Xu, Hongbo Li, and Jing Wei. "Machine learning-driven new material discovery." Nanoscale Advances 2, no. 8 (2020): 3115–30. http://dx.doi.org/10.1039/d0na00388c.
Full textShemilt, Ian, Anneliese Arno, James Thomas, et al. "Cost-effectiveness of Microsoft Academic Graph with machine learning for automated study identification in a living map of coronavirus disease 2019 (COVID-19) research." Wellcome Open Research 6 (August 19, 2021): 210. http://dx.doi.org/10.12688/wellcomeopenres.17141.1.
Full textChen, Peng, Yunni Xia, and Chun Yu. "A Novel Reinforcement-Learning-Based Approach to Workflow Scheduling Upon Infrastructure-as-a-Service Clouds." International Journal of Web Services Research 18, no. 1 (2021): 21–33. http://dx.doi.org/10.4018/ijwsr.2021010102.
Full textMoreno, Marcio, Vítor Lourenço, Sandro Rama Fiorini, et al. "Managing Machine Learning Workflow Components." International Journal of Semantic Computing 14, no. 02 (2020): 295–309. http://dx.doi.org/10.1142/s1793351x20400115.
Full textSun, Ziheng, Liping Di, Annie Burgess, Jason A. Tullis, and Andrew B. Magill. "Geoweaver: Advanced Cyberinfrastructure for Managing Hybrid Geoscientific AI Workflows." ISPRS International Journal of Geo-Information 9, no. 2 (2020): 119. http://dx.doi.org/10.3390/ijgi9020119.
Full textChakroborti, Debasish, Banani Roy, and Sristy Sumana Nath. "Designing for Recommending Intermediate States in A Scientific Workflow Management System." Proceedings of the ACM on Human-Computer Interaction 5, EICS (2021): 1–29. http://dx.doi.org/10.1145/3457145.
Full textSilva, Talita M., Jeremy C. Borniger, Michele Joana Alves, et al. "Machine learning approaches reveal subtle differences in breathing and sleep fragmentation in Phox2b-derived astrocytes ablated mice." Journal of Neurophysiology 125, no. 4 (2021): 1164–79. http://dx.doi.org/10.1152/jn.00155.2020.
Full textMahankali, Ranjeeth, Brian R. Johnson, and Alex T. Anderson. "Deep learning in design workflows: The elusive design pixel." International Journal of Architectural Computing 16, no. 4 (2018): 328–40. http://dx.doi.org/10.1177/1478077118800888.
Full textSingh, Alok, Shweta Purawat, Arvind Rao, and Ilkay Altintas. "Modular performance prediction for scientific workflows using Machine Learning." Future Generation Computer Systems 114 (January 2021): 1–14. http://dx.doi.org/10.1016/j.future.2020.04.048.
Full textMahajan, Amey, and Satish M. Mahajan. "Deep Learning Methods and Their Application to Nursing Workflows." CIN: Computers, Informatics, Nursing 39, no. 1 (2021): 1–6. http://dx.doi.org/10.1097/cin.0000000000000702.
Full textJentzsch, Sophie, and Nico Hochgeschwender. "A qualitative study of Machine Learning practices and engineering challenges in Earth Observation." it - Information Technology 63, no. 4 (2021): 235–47. http://dx.doi.org/10.1515/itit-2020-0045.
Full textKyamakya, Kyandoghere, Ahmad Haj Mosa, Fadi Al Machot, and Jean Chamberlain Chedjou. "Document-Image Related Visual Sensors and Machine Learning Techniques." Sensors 21, no. 17 (2021): 5849. http://dx.doi.org/10.3390/s21175849.
Full textMonge, David A., Matej Holec, Filip Zelezny, and Carlos Garcia Garino. "Learning Running-time Prediction Models for Gene-Expression Analysis Workflows." IEEE Latin America Transactions 13, no. 9 (2015): 3088–95. http://dx.doi.org/10.1109/tla.2015.7350063.
Full textZhang, Jize, Bhavya Kailkhura, and T. Yong-Jin Han. "Leveraging Uncertainty from Deep Learning for Trustworthy Material Discovery Workflows." ACS Omega 6, no. 19 (2021): 12711–21. http://dx.doi.org/10.1021/acsomega.1c00975.
Full textBeyyoudh, Mohammed, Mohammed Khalidi Idrissi, and Samir Bennani. "Towards a New Generation of Intelligent Tutoring Systems." International Journal of Emerging Technologies in Learning (iJET) 14, no. 14 (2019): 105. http://dx.doi.org/10.3991/ijet.v14i14.10664.
Full textHuang, Binbin, Yuanyuan Xiang, Dongjin Yu, Jiaojiao Wang, Zhongjin Li, and Shangguang Wang. "Reinforcement Learning for Security-Aware Workflow Application Scheduling in Mobile Edge Computing." Security and Communication Networks 2021 (May 25, 2021): 1–13. http://dx.doi.org/10.1155/2021/5532410.
Full textDemšar, Janez, and Blaž Zupan. "Hands-on training about overfitting." PLOS Computational Biology 17, no. 3 (2021): e1008671. http://dx.doi.org/10.1371/journal.pcbi.1008671.
Full textKřen, Tomáš, Martin Pilát, and Roman Neruda. "Automatic Creation of Machine Learning Workflows with Strongly Typed Genetic Programming." International Journal on Artificial Intelligence Tools 26, no. 05 (2017): 1760020. http://dx.doi.org/10.1142/s021821301760020x.
Full textBodemer, Brett. "The wisdom of embedding student assistants in library learning workflows: Focus on listening and learning." College & Research Libraries News 77, no. 7 (2016): 347–48. http://dx.doi.org/10.5860/crln.77.7.9524.
Full textCawi, Eric, Patricio S. La Rosa, and Arye Nehorai. "Designing machine learning workflows with an application to topological data analysis." PLOS ONE 14, no. 12 (2019): e0225577. http://dx.doi.org/10.1371/journal.pone.0225577.
Full textJannach, Dietmar, Michael Jugovac, and Lukas Lerche. "Supporting the Design of Machine Learning Workflows with a Recommendation System." ACM Transactions on Interactive Intelligent Systems 6, no. 1 (2016): 1–35. http://dx.doi.org/10.1145/2852082.
Full textMonge, David A., Matěj Holec, Filip Železný, and Carlos García Garino. "Ensemble learning of runtime prediction models for gene-expression analysis workflows." Cluster Computing 18, no. 4 (2015): 1317–29. http://dx.doi.org/10.1007/s10586-015-0481-5.
Full textGarí, Yisel, David A. Monge, Cristian Mateos, and Carlos García Garino. "Learning budget assignment policies for autoscaling scientific workflows in the cloud." Cluster Computing 23, no. 1 (2019): 87–105. http://dx.doi.org/10.1007/s10586-018-02902-0.
Full textHutchinson, Tim. "Natural language processing and machine learning as practical toolsets for archival processing." Records Management Journal 30, no. 2 (2020): 155–74. http://dx.doi.org/10.1108/rmj-09-2019-0055.
Full textBeirnaert, Charlie, Laura Peeters, Pieter Meysman, et al. "Using Expert Driven Machine Learning to Enhance Dynamic Metabolomics Data Analysis." Metabolites 9, no. 3 (2019): 54. http://dx.doi.org/10.3390/metabo9030054.
Full textKuo, Kevin. "DeepTriangle: A Deep Learning Approach to Loss Reserving." Risks 7, no. 3 (2019): 97. http://dx.doi.org/10.3390/risks7030097.
Full textCarrieri, Anna Paola, Will PM Rowe, Martyn Winn, and Edward O. Pyzer-Knapp. "A Fast Machine Learning Workflow for Rapid Phenotype Prediction from Whole Shotgun Metagenomes." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9434–39. http://dx.doi.org/10.1609/aaai.v33i01.33019434.
Full textCawi, Eric, Patricio S. La Rosa, and Arye Nehorai. "Correction: Designing machine learning workflows with an application to topological data analysis." PLOS ONE 15, no. 2 (2020): e0229821. http://dx.doi.org/10.1371/journal.pone.0229821.
Full textBouwmeester, Robbin, Ralf Gabriels, Tim Van Den Bossche, Lennart Martens, and Sven Degroeve. "The Age of Data‐Driven Proteomics: How Machine Learning Enables Novel Workflows." PROTEOMICS 20, no. 21-22 (2020): 1900351. http://dx.doi.org/10.1002/pmic.201900351.
Full textCarolis, Berardina De, Stefano Ferilli, and Domenico Redavid. "Incremental Learning of Daily Routines as Workflows in a Smart Home Environment." ACM Transactions on Interactive Intelligent Systems 4, no. 4 (2015): 1–23. http://dx.doi.org/10.1145/2675063.
Full textBleser, Gabriele, Dima Damen, Ardhendu Behera, et al. "Cognitive Learning, Monitoring and Assistance of Industrial Workflows Using Egocentric Sensor Networks." PLOS ONE 10, no. 6 (2015): e0127769. http://dx.doi.org/10.1371/journal.pone.0127769.
Full textGu, Haihua, Xiaoping Li, Muyao Liu, and Shuang Wang. "Scheduling method with adaptive learning for microservice workflows with hybrid resource provisioning." International Journal of Machine Learning and Cybernetics 12, no. 10 (2021): 3037–48. http://dx.doi.org/10.1007/s13042-021-01396-4.
Full textPapiez, Anna, Christophe Badie, and Joanna Polanska. "Machine learning techniques combined with dose profiles indicate radiation response biomarkers." International Journal of Applied Mathematics and Computer Science 29, no. 1 (2019): 169–78. http://dx.doi.org/10.2478/amcs-2019-0013.
Full textZhang, Xuechen, Hasan Abbasi, Kevin Huck, and Allen D. Malony. "WOWMON: A Machine Learning-based Profiler for Self-adaptive Instrumentation of Scientific Workflows." Procedia Computer Science 80 (2016): 1507–18. http://dx.doi.org/10.1016/j.procs.2016.05.474.
Full textFriedel, Michael J., Neil Symington, Larysa Halas, Kokpiang Tan, Ken Lawrie, and David Gibson. "Improved Groundwater System Characterization and Mapping Using Hydrogeophysical Data and Machine-Learning Workflows." ASEG Extended Abstracts 2018, no. 1 (2018): 1. http://dx.doi.org/10.1071/aseg2018abw10_3h.
Full textAlves, Jose M., Leonardo M. Honorio, and Miriam A. M. Capretz. "ML4IoT: A Framework to Orchestrate Machine Learning Workflows on Internet of Things Data." IEEE Access 7 (2019): 152953–67. http://dx.doi.org/10.1109/access.2019.2948160.
Full textAdler, Amir, Mauricio Araya-Polo, and Tomaso Poggio. "Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows." IEEE Signal Processing Magazine 38, no. 2 (2021): 89–119. http://dx.doi.org/10.1109/msp.2020.3037429.
Full textWong, Wilson K. M., Mugdha V. Joglekar, Vijit Saini, et al. "Machine learning workflows identify a microRNA signature of insulin transcription in human tissues." iScience 24, no. 4 (2021): 102379. http://dx.doi.org/10.1016/j.isci.2021.102379.
Full text