Dissertations / Theses on the topic 'Least-squares finite element'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Least-squares finite element.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wei, Fei. "Weighted least-squares finite element methods for PIV data assimilation." Thesis, Montana State University, 2011. http://etd.lib.montana.edu/etd/2011/wei/WeiF0811.pdf.
Full textBringmann, Philipp. "Adaptive least-squares finite element method with optimal convergence rates." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22350.
Full textThe least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
Storn, Johannes. "Topics in Least-Squares and Discontinuous Petrov-Galerkin Finite Element Analysis." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20141.
Full textThe analysis of partial differential equations is a core area in mathematics due to the fundamental role of partial differential equations in the description of phenomena in applied sciences. Computers can approximate the solutions to these equations for many problems. They use numerical schemes which should provide good approximations and verify the accuracy. The least-squares finite element method (LSFEM) and the discontinuous Petrov-Galerkin (DPG) method satisfy these requirements. This thesis investigates these two schemes. The first part of this thesis explores the accuracy of solutions to the LSFEM. It combines properties of the underlying partial differential equation with properties of the LSFEM and so proves the asymptotic equality of the error and a computable residual. Moreover, this thesis introduces an novel scheme for the computation of guaranteed upper error bounds. While the established error estimator leads to a significant overestimation of the error, numerical experiments indicate a tiny overestimation with the novel bound. The investigation of error bounds for the Stokes problem visualizes a relation of the LSFEM and the Ladyzhenskaya-Babuška-Brezzi (LBB) constant. This constant is a key in the existence and stability of solution to problems in fluid dynamics. The second part of this thesis utilizes this relation to design a competitive numerical scheme for the computation of the LBB constant. The third part of this thesis investigates the DPG method. It analyses an abstract framework which compiles existing applications of the DPG method. The analysis relates the DPG method with a slightly perturbed LSFEM. Hence, the results from the first part of this thesis extend to the DPG method. This enables a precise investigation of existing and the design of novel DPG schemes.
Akargun, Yigit Hayri. "Least-squares Finite Element Solution Of Euler Equations With Adaptive Mesh Refinement." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614138/index.pdf.
Full textGoktolga, Mustafa Ugur. "Simulation Of Conjugate Heat Transfer Problems Using Least Squares Finite Element Method." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614787/index.pdf.
Full textquadrilateral and triangular elements for two dimensional problems, hexagonal and tetrahedron elements for three dimensional problems were tried. However, since only the quadrilateral and hexagonal elements gave satisfactory results, they were used in all the above mentioned simulations.
Johnsen, Eivind. "Application method of the least squares finite element method to fracture mechanics." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/16435.
Full textDanisch, Garvin. "Gemischte Finite-element-least-squares-Methoden für die Flachwassergleichungen mit kleiner Viskosität." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=983833052.
Full textDolan, P. S. "Viscous incompressible flow solutions via divergence free least squares finite element optimisation." Thesis, University of Hertfordshire, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377903.
Full textPrabhakar, Vivek. "Least squares based finite element formulations and their applications in fluid mechanics." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1152.
Full textBochev, Pavel B. "Least squares finite element methods for the Stokes and Navier-Stokes equations." Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06062008-165910/.
Full textBringmann, Philipp [Verfasser]. "Adaptive least-squares finite element method with optimal convergence rates / Philipp Bringmann." Berlin : Humboldt-Universität zu Berlin, 2021. http://d-nb.info/1226153186/34.
Full textZhu, Lei. "A discontinuous least-squares spatial discretization for the sn equations." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3026.
Full textMünzenmaier, Steffen [Verfasser]. "Least-squares finite element methods for coupled generalized Newtonian Stokes-Darcy flow / Steffen Münzenmaier." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1029514526/34.
Full textFurlan, Felipe Adolvando Correia. "Métodos locais de integração explícito e implícito aplicados ao método de elementos finitos de alta ordem." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263464.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-18T15:16:56Z (GMT). No. of bitstreams: 1 Furlan_FelipeAdolvandoCorreia_M.pdf: 1842661 bytes, checksum: 69ed6fc529cf4f757f3c8a2f42e20518 (MD5) Previous issue date: 2011
Resumo: O presente trabalho apresenta algoritmos locais de integração explícitos e implícitos aplicados ao método de elementos finitos de alta ordem, baseados na decomposição por autovetores das matrizes de massa e rigidez. O procedimento de solução é realizado para cada elemento da malha e os resultados são suavizados no contorno dos elementos usando a aproximação por mínimos quadrados. Consideraram-se os métodos de diferença central e Newmark para o desenvolvimento dos procedimentos de solução elemento por elemento. No algoritmo local explícito, observou-se que as soluções convergem para as soluções globais obtidas com a matriz de massa consistente. O algoritmo local implícito necessitou de subiterações para alcançar convergência. Exemplos bi e tridimensionais de elasticidade linear e não linear são apresentados. Os resultados mostraram precisão apropriada para problemas com solução analítica. Exemplos maiores também foram apresentados com resultados satisfatórios
Abstract: This work presents explicit and implicit local integration algorithms applied to the high-order finite element method, based on the eigenvalue decomposition of the elemental mass and stiffness matrices. The solution procedure is performed for each element of the mesh and the results are smoothed on the boundary of the elements using the least square approximation. The central difference and Newmark methods were considered for developing the element by element solution procedures. For the local explicit algorithm, it was observed that the solutions converge for the global solutions obtained with the consistent mass matrix. The local implicit algorithm required subiterations to achieve convergence. Two-dimensional and three-dimensional examples of linear and non-linear elasticity are presented. Results showed appropriate accuracy for problems with analytical solution. Larger examples are also presented with satisfactory results
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
Nisters, Carina [Verfasser], and Jörg [Akademischer Betreuer] Schröder. "Least-squares finite element methods with applications in fluid and solid mechanics / Carina Nisters ; Betreuer: Jörg Schröder." Duisburg, 2018. http://d-nb.info/1172634114/34.
Full textLee, Hyesuk Kwon. "Optimization Based Domain Decomposition Methods for Linear and Nonlinear Problems." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30696.
Full textPh. D.
Pratt, Brittan Sheldon. "An assessment of least squares finite element models with applications to problems in heat transfer and solid mechanics." Texas A&M University, 2008. http://hdl.handle.net/1969.1/85941.
Full textPontaza, Juan Pablo. "Least-squares variational principles and the finite element method: theory, formulations, and models for solid and fluid mechanics." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/288.
Full textHellwig, Friederike. "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20034.
Full textThe thesis "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods" proves optimal convergence rates for four lowest-order discontinuous Petrov-Galerkin methods for the Poisson model problem for a sufficiently small initial mesh-size in two different ways by equivalences to two other non-standard classes of finite element methods, the reduced mixed and the weighted Least-Squares method. The first is a mixed system of equations with first-order conforming Courant and nonconforming Crouzeix-Raviart functions. The second is a generalized Least-Squares formulation with a midpoint quadrature rule and weight functions. The thesis generalizes a result on the primal discontinuous Petrov-Galerkin method from [Carstensen, Bringmann, Hellwig, Wriggers 2018] and characterizes all four discontinuous Petrov-Galerkin methods simultaneously as particular instances of these methods. It establishes alternative reliable and efficient error estimators for both methods. A main accomplishment of this thesis is the proof of optimal convergence rates of the adaptive schemes in the axiomatic framework [Carstensen, Feischl, Page, Praetorius 2014]. The optimal convergence rates of the four discontinuous Petrov-Galerkin methods then follow as special cases from this rate-optimality. Numerical experiments verify the optimal convergence rates of both types of methods for different choices of parameters. Moreover, they complement the theory by a thorough comparison of both methods among each other and with their equivalent discontinuous Petrov-Galerkin schemes.
Storn, Johannes [Verfasser], Carsten [Gutachter] Carstensen, Gerhard [Gutachter] Starke, and Dietmar [Gutachter] Gallistl. "Topics in Least-Squares and Discontinuous Petrov-Galerkin Finite Element Analysis / Johannes Storn ; Gutachter: Carsten Carstensen, Gerhard Starke, Dietmar Gallistl." Berlin : Humboldt-Universität zu Berlin, 2019. http://d-nb.info/1192302907/34.
Full textCamp, Brian David. "A Class of Immersed Finite Element Spaces and Their Application to Forward and Inverse Interface Problems." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/29923.
Full textPh. D.
Fave, Sebastian Philipp. "Investigative Application of the Intrinsic Extended Finite Element Method for the Computational Characterization of Composite Materials." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/50483.
Full textMaster of Science
Krueger, Justin Michael. "Parameter Estimation Methods for Ordinary Differential Equation Models with Applications to Microbiology." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78674.
Full textPh. D.
Kouri, Jeffrey Victor. "Improved finite element analysis of thick laminated composite plates by the predictor corrector technique and approximation of C[superscript]1 continuity with a new least squares element." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/20762.
Full textMüller, Benjamin Verfasser], Gerhard [Akademischer Betreuer] Starke, Jörg [Akademischer Betreuer] [Schröder, and Christian [Akademischer Betreuer] Meyer. "Mixed least squares finite element methods based on inverse stress-strain relations in hyperelasticity / Benjamin Müller. Gutachter: Jörg Schröder ; Christian Meyer. Betreuer: Gerhard Starke." Duisburg, 2015. http://d-nb.info/1071543490/34.
Full textMüller, Benjamin [Verfasser], Gerhard Akademischer Betreuer] Starke, Jörg [Akademischer Betreuer] [Schröder, and Christian [Akademischer Betreuer] Meyer. "Mixed least squares finite element methods based on inverse stress-strain relations in hyperelasticity / Benjamin Müller. Gutachter: Jörg Schröder ; Christian Meyer. Betreuer: Gerhard Starke." Duisburg, 2015. http://nbn-resolving.de/urn:nbn:de:hbz:464-20150522-081101-4.
Full textFerreira, Sabrina dos Santos 1984. "Estudo do método dos elementos finitos de mínimos quadrados - LSFEM para resolução da equação de convecção - difusão bidimensional." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265744.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-28T11:40:36Z (GMT). No. of bitstreams: 1 Ferreira_SabrinadosSantos_M.pdf: 4964592 bytes, checksum: 48a2af83f98b244951f9db97d31a68cc (MD5) Previous issue date: 2015
Resumo: O objetivo deste trabalho foi o estudo da distribuição de temperatura em um domínio retangular, para tal foi resolvida a Equação de Convecção - Difusão Bidimensional via Método dos Elementos Finitos de Mínimos Quadrados - Least Squares Finite Element Method (LSFEM). Para discretização espacial foi utilizado elementos bidimensionais quadráticos, nesse caso os elementos quadriláteros com oito nós foram escolhidos. A discretização temporal nos casos transientes foi aproximada via Método de Crank - Nicolson. Para a o obtenção da matriz do elemento e o vetor do lado direito a quadratura de Gauss - Legendre foi empregada. A solução do sistema algébrico resultante foi obtida a partir do Método dos Gradientes Conjugados, um dos métodos iterativos mais eficientes na resolução de sistemas lineares quando a matriz é simétrica, esparsa e definida positiva, sendo essas características resultantes da formulação via LSFEM. É apresentada a formulação matemática do problema, a metodologia empregada na solução. Para a obtenção dos resultados um código em linguagem C foi implementado, por fim são apresentados os resultados obtidos, as conclusões e sugestões para trabalhos futuros
Abstract: The objective of this work was the study of temperature distribution in a rectangular domain, for that was solved Equation Convection - Diffusion Two-Dimensional via Least Squares Finite Element Method - LSFEM. For spatial discretization was used two-dimensional quadratic elements, in this case the quadrilateral elements with eight nodes were chosen. The time discretization in transient cases was approached via Crank - Nicolson Method. To obtain the element matrix and vector right side of the Gauss - Legendre quadrature was employed. The solution of resulting algebraic system was obtained using Conjugate Gradient Method, one of the most efficient iterative methods for solving linear sistenas when the matrix is ??symmetric, and positive definite sparse, and these resulting characteristics of the formulation via LSFEM. The mathematical formulation of the problem, the methodology used in the solution is shown. To obtain the results a code in C language was implemented, finally is presented results, conclusions and suggestions for future work
Mestrado
Termica e Fluidos
Mestra em Engenharia Mecânica
Johnson, Mikael. "Acoustic Emission in Composite Laminates - Numerical Simulations and Experimental Characterization." Doctoral thesis, KTH, Solid Mechanics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3452.
Full textReis, Luiz Antonio 1975. "Acoplamento MEC-MEF para análise de pórtico linear sobre base elástica." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/258076.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo
Made available in DSpace on 2018-08-25T11:44:30Z (GMT). No. of bitstreams: 1 Reis_LuizAntonio_M.pdf: 3239468 bytes, checksum: 6e32be621db949f69c865def857a4bc9 (MD5) Previous issue date: 2014
Resumo: O presente trabalho está divido em quatro partes. Na primeira parte, utilizando o método dos elementos de contorno (MEC), se fez a análise de problemas bidimensionais com aproximação linear. Foi considerada a possibilidade de se aplicar a técnica de sub-regiões para se levar em conta a diversidade de materiais, bem como a suavização do contorno por mínimos quadrados para evitar a possíveis perturbações. Foi considerado a possibilidade de colocação de uma linha de carga no domínio. Na segunda parte, utilizando o método dos elementos finitos (MEF), se fez a análise linear de pórticos planos. Para este estudo foram utilizadas barras com dois nós e esses com três graus de liberdade. Na terceira parte, a análise elástica linear de meios contínuos (Estado Plano de Tensão Generalizado) enrijecidos com elementos lineares (barras) é estudada fazendo-se um acoplamento entre elementos modelados com o MEC e com o MEF. As fibras são modeladas pelo MEF com elementos lineares de três graus de liberdade por nó e quatro nós por barra. Os elementos planos são modelados pelo MEC com elementos isoparamétricos lineares no perímetro. É permitido o uso de sub-regiões com objetivo de generalizar o tratamento do meio elástico. Na quarta parte, utilizando o acoplamento MEF/MEF, se fez a análise linear de pórticos planos sobre base elástica. O acoplamento se dá entre as barras do pórtico e as barras introduzidas como enriquecedor no problema elástico bidimensional. Tendo em conta estes aspectos da formulação desenvolvida, alguns exemplos são apresentados para avaliação de seu desempenho nos problemas de engenharia
Abstract: This paper is divided into four parts . In the first part , using the boundary element method (BEM) , we did the analysis of two-dimensional problems with linear approximation . We considered the possibility of applying the technique of sub - regions to take into account different materials, as well as smoothing the contour by least squares to avoid possible disturbances . We considered the possibility of placing a load line in the field. In the second part, the linear analysis for plane frames was carried out with the finite element method (FEM). Bars with two nodes and three degrees of freedom were used in this study . In the third part, the linear elastic analysis of continuous media (Generalized Plane Stress problems) stiffened with one-dimensional elements (bars) is studied through between elements of the BEM and the FEM. The fibers are modeled by FEM with three degrees of freedom linear elements and using four-nodes. The plane domain is modeled with the BEM and using isoparametric elements. The use of sub - regions in order to generalize the treatment of the elastic medium is allowed. In the fourth part , using the FEM / FEM coupling , a linear analysis of plane frames on elastic foundation is carried out. Some examples are presented to evaluate the formulation behavior engineering problems
Mestrado
Estruturas
Mestre em Engenharia Civil
Romão, Estaner Claro 1979. "Estudo numérico da aplicação do método dos elementos finitos de Galerkin e dos mínimos quadrados na solução da equação da convecção-difusão-reação tridimensional." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263390.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-17T11:43:11Z (GMT). No. of bitstreams: 1 Romao_EstanerClaro_D.pdf: 1521072 bytes, checksum: 77c6ac2ca14bf77a766f7f88487a59c5 (MD5) Previous issue date: 2011
Resumo: Este trabalho trata da aplicação do Método dos Elementos Finitos nas variantes Galerkin e Mínimos Quadrados com equações auxiliares para a solução numérica da equação diferencial parcial que modela a convecção-difusão-reação definida sobre um domínio tridimensional em regime permanente. Na discretização espacial foram utilizados elementos hexaedrais com oito (elemento linear) e vinte e sete (elemento quadrático) nós, no qual foram adotadas funções de interpolação de Lagrange nas coordenadas locais. Transformando toda a formulação do problema das coordenadas globais para as coordenadas locais, o Método da Quadratura de Gauss-Legendre foi utilizado para integração numérica dos coeficientes das matrizes dos elementos. Adicionalmente, à formulação pelos dois métodos, um código computacional foi implementado para simular o fenômeno proposto. Dispondo de soluções analíticas, várias análises de erro numérico foram realizadas a partir das normas L2 (erro médio no domínio) e L? (maior erro cometido no domínio), validando assim os resultados numéricos. Um caso real é proposto e analisado
Abstract: This paper the application of the Finite Element Method in variants Galerkin and Least Squares with auxiliary equations for the numerical solution of partial differential equation that models the convection-diffusion-reaction defined over a three-dimensional domain in steady state. In the spatial discretization were used hexahedrons elements with eight (linear element) and twenty-seven (quadratic element) nodes, which were adopted Lagrange interpolation functions in local coordinates. Transforming the problem of global coordinates to local coordinates, the method of Gauss-Legendre quadrature was used for numerical integration of the coefficients of the matrices of the elements. Additionally, the formulation by the two methods, a computer code was implemented to simulate the phenomenon proposed. Offering analytical solutions, several numerical error analysis were performed from L2 norms (average error in the domain) and L? (higher error in the domain), thus validating the numerical results. A real case is proposed and analyzed
Doutorado
Termica e Fluidos
Doutor em Engenharia Mecânica
Pereira, Vanessa Davanço [UNESP]. "Simulação numérica de escoamentos de fluidos pelo método de elementos finitos de mínimos quadrados." Universidade Estadual Paulista (UNESP), 2005. http://hdl.handle.net/11449/90836.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho foram feitas simulações de escoamentos incompressiveis por um método de elementos finitos de mínimos quadrados (LSFEM – Least Squares Finite Element Method), usando as formulações velocidade-pressão-vorticidade e velocidade-pressão-tensão, denominadas na literatura de formulações u − p −ω e u = p −τ respectivamente. Estas formulações são preferidas por resultarem em sistemas de equações diferenciais de primeira ordem, o que é mais conveniente para implementação pelo LSFEM. O objetivo principal deste trabalho é a simulação computacional de escoamentos laminares, transicionais e turbulentos através da aplicação da metodologia de simulação de grandes escalas (LES – Large Eddy Simulation) com o modelo de viscosidade turbulenta de Smagorinky para modelar as tensões submalha. Alguns problemas padrões foram resolvidos para validar um código computacional desenvolvido e os resultados são apresentados e comparados com resultados disponíveis na literatura.
In this work simulations of incompressible fluid flows have been done by a Least Squares Finite Element Method (LSFEM) using the velocity-pressure-vorticity and velocity-pressurestress formulations, named, in the literature, u − p −ω and u = p −τ formulations respectively. These formulations are preferred because the resulting equations are partial differential equations of first order, which is more convenient for implementation by LSFEM. The main purpose of this work are the numerical computations of laminar, transitional and turbulent fluid flows through the application of large eddy simulation (LES) methodology using the LSFEM. The Navier- Stokes equations in u − p −ω and u = p −τ formulations are filtered and the eddy viscosity model of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark problems are solved for validate a developed numerical code and the preliminary results are presented and compared with available results from the literature.
Szypowski, Ryan. "Least-squares finite elements and constrained evolution systems." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3320112.
Full textTitle from first page of PDF file (viewed September 12, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 73-74).
Pereira, Vanessa Davanço. "Simulação numérica de escoamentos de fluidos pelo método de elementos finitos de mínimos quadrados /." Ilha Solteira : [s.n.], 2005. http://hdl.handle.net/11449/90836.
Full textBanca: João Batista Aparecido
Banca: Luiz Felipe Mendes de Moura
Resumo: Neste trabalho foram feitas simulações de escoamentos incompressiveis por um método de elementos finitos de mínimos quadrados (LSFEM - Least Squares Finite Element Method), usando as formulações velocidade-pressão-vorticidade e velocidade-pressão-tensão, denominadas na literatura de formulações u − p −ω e u = p −τ respectivamente. Estas formulações são preferidas por resultarem em sistemas de equações diferenciais de primeira ordem, o que é mais conveniente para implementação pelo LSFEM. O objetivo principal deste trabalho é a simulação computacional de escoamentos laminares, transicionais e turbulentos através da aplicação da metodologia de simulação de grandes escalas (LES - Large Eddy Simulation) com o modelo de viscosidade turbulenta de Smagorinky para modelar as tensões submalha. Alguns problemas padrões foram resolvidos para validar um código computacional desenvolvido e os resultados são apresentados e comparados com resultados disponíveis na literatura.
Abstract: In this work simulations of incompressible fluid flows have been done by a Least Squares Finite Element Method (LSFEM) using the velocity-pressure-vorticity and velocity-pressurestress formulations, named, in the literature, u − p −ω and u = p −τ formulations respectively. These formulations are preferred because the resulting equations are partial differential equations of first order, which is more convenient for implementation by LSFEM. The main purpose of this work are the numerical computations of laminar, transitional and turbulent fluid flows through the application of large eddy simulation (LES) methodology using the LSFEM. The Navier- Stokes equations in u − p −ω and u = p −τ formulations are filtered and the eddy viscosity model of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark problems are solved for validate a developed numerical code and the preliminary results are presented and compared with available results from the literature.
Mestre
Steeger, Karl Verfasser], and Jörg [Akademischer Betreuer] [Schröder. "Least-squares mixed finite elements for geometrically nonlinear solid mechanics / Karl Steeger ; Betreuer: Jörg Schröder." Duisburg, 2017. http://d-nb.info/1136864016/34.
Full textSteeger, Karl [Verfasser], and Jörg [Akademischer Betreuer] Schröder. "Least-squares mixed finite elements for geometrically nonlinear solid mechanics / Karl Steeger ; Betreuer: Jörg Schröder." Duisburg, 2017. http://d-nb.info/1136864016/34.
Full textPechmann, Patrick R. "Penalized Least Squares Methoden mit stückweise polynomialen Funktionen zur Lösung von partiellen Differentialgleichungen." kostenfrei, 2008. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2008/2813/.
Full textMachado, Fernando Machado. "Aproximação de Galerkin mínimos-quadrados de escoamentos axissimétricos de fluido Herschel-Bulkley através de expansões abruptas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2007. http://hdl.handle.net/10183/11964.
Full textThe study of non-Newtonian fluid flows in expansions is of great interest for researchers in the several branches of engineering, due to their wide application both in industry and academy. The objective of this Dissertation is to simulate flow problems involving a viscoplastic fluid through an axisymmetric abrupt expansion. The mechanical model employed is based on the mass and momentum conservative equations for isochoric flows coupled with the Generalized Newtonian Liquid (GNL) constitutive equation, with the Papanastasiou-regularized Herschel-Bulkley viscosity function. The mechanical model is approximated by a stabilized finite element scheme, namely the Galerkin Least-squares method. This method (GLS) is used in order to overcome the numerical difficulties of the classical Galerkin method: the Babuška- Brezzi condition and the inherent instability in advective flow regions. The method is built adding mesh-dependent terms in order to increase the stability of the classical Galerkin formulation without damaging its consistency. The GLS formulation is applied to study the influence of power-law index, yield stress and aspect reason in the flow dynamics of Herschel- Bulkley fluids through an axisymmetric abrupt expansions of aspect reason 1:2 and 1:4. Problems involving negligible Reynolds numbers, for a Herschel-Bulkley number range between 0 and 100 and e power-law index range between 0.2 and 1.0 are presented. The results are physically comprehensive and are in accordance with the literature.
Gdhami, Asma. "Méthodes isogéométriques pour les équations aux dérivées partielles hyperboliques." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4210/document.
Full textIsogeometric Analysis (IGA) is a modern strategy for numerical solution of partial differential equations, originally proposed by Thomas Hughes, Austin Cottrell and Yuri Bazilevs in 2005. This discretization technique is a generalization of classical finite element analysis (FEA), designed to integrate Computer Aided Design (CAD) and FEA, to close the gap between the geometrical description and the analysis of engineering problems. This is achieved by using B-splines or non-uniform rational B-splines (NURBS), for the description of geometries as well as for the representation of unknown solution fields.The purpose of this thesis is to study isogeometric methods in the context of hyperbolic problems usingB-splines as basis functions. We also propose a method that combines IGA with the discontinuous Galerkin(DG)method for solving hyperbolic problems. More precisely, DG methodology is adopted across the patchinterfaces, while the traditional IGA is employed within each patch. The proposed method takes advantageof both IGA and the DG method.Numerical results are presented up to polynomial order p= 4 both for a continuous and discontinuousGalerkin method. These numerical results are compared for a range of problems of increasing complexity,in 1D and 2D
Bertrand, Fleurianne [Verfasser]. "Approximated flux boundary conditions for Raviart-Thomas finite elements on domains with curved boundaries and applications to first-order system least squares / Fleurianne Bertrand." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1063982103/34.
Full textPereira, Vanessa Davanço. "Métodos de elementos finitos estabilizados em problemas de convecção-difusão." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263418.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-17T00:52:39Z (GMT). No. of bitstreams: 1 Pereira_VanessaDavanco_D.pdf: 25543252 bytes, checksum: e4c1c00ac828271186af3bc2fc3654d5 (MD5) Previous issue date: 2010
Resumo: Neste trabalho foram desenvolvidos e aplicados códigos computacionais baseados em métodos de elementos finitos estabilizados, principalmente, a versão de mínimos quadrados (LSFEM - Least Squares Finite Element Method) que leva a sistemas algébricos sempre simétricos e positivos definidos, independentemente dos sistemas de equações diferenciais parciais dos casos considerados. Um método conhecido como CBS (Characteristic Based Split) também tem sido aplicado o qual possibilita a aplicação do método de Galerkin (GFEM - Galerkin Finite Element Method) para solução de problemas de escoamento de fluidos, sem oscilações na solução. Resultados têm sido obtidos para problemas de convecção-difusão bi e tridimensional discretizando os domínios por malhas estruturadas de elementos quadráticos, e para solução de escoamentos incompressíveis bidimensionais usando malhas não estruturadas de elementos finitos triangulares lineares
Abstract: In this study we developed and implemented computer codes based on stabilized finite element methods, especially the version of least squares (LSFEM - Least Squares Finite Element Method) that leads to algebraic systems always symmetric and positive defined, independently of the systems of partial differential equations of the cases considered. A method known as CBS (Characteristic Based Split) has also been implemented which allows the application of the Galerkin method (GFEM - Galerkin Finite Element Method) to solve problems of fluid flow without oscilations in the solution. Results have been obtained for two-and three-dimensional problems of convection-diffusion type discretizing the domains by structured meshes of quadratic elements and for solution of two-dimensional incompressible flows using unstructured meshes of linear triangles
Doutorado
Termica e Fluidos
Doutor em Engenharia Mecânica
Nguyen, Minh Chien. "Modélisation et simulation multiphysique du bain de fusion en soudage à l'arc TIG." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4749/document.
Full textIn this work, we develop a 3D physical and numerical model of the GTA (gas tungsten arc) welding process in order to predict, for given welding parameters, useful quantities for the designer of welded assembly.The model is developed in the Cast3M finite element software and takes into account the main physical phenomena acting in the workpiece and particularly in the weld pool, subject to source terms modeling the arc part of the welding process. A steady solution of this model is thought for and involves the coupling of the nonlinear thermohydaulics and electromagnetic equations together with the displacement of the deformable free surface of the weld pool.A first step in the development consisted in modeling the electromagnetic phenomena with two different numerical methods, in comparing the numerical results obtained with those of the literature. Then, in order to assess the predictive capability of the model, simulations of various welding configurations are performed : variation in the chemical composition of the material, of the welding speed, of the prescribed arc pressure and of the welding positions, which is a focus of this work, are studied. A good agreement is obtained between the results of our model and other experimental and numerical results of the literature. Eventually, a model accounting for metal filling is proposed and its results are discussed. Thus, our complete model can be seen as a solid foundation towards future totally-coupled 3D welding models including the arc and it will be included in the WPROCESS software dedicated to the numerical simulation of welding
Oqielat, Moa'ath Nasser. "Modelling water droplet movement on a leaf surface." Queensland University of Technology, 2009. http://eprints.qut.edu.au/30232/.
Full textMüller, Hannes. "Ein Konzept zur numerischen Berechnung inkompressibler Strömungen auf Grundlage einer diskontinuierlichen Galerkin-Methode in Verbindung mit nichtüberlappender Gebietszerlegung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 1999. http://nbn-resolving.de/urn:nbn:de:swb:14-992350020281-96843.
Full textTaghaddosi, Farzad. "An adaptive least-squares finite element method for the compressible Euler equations." Thesis, 1996. http://spectrum.library.concordia.ca/4799/1/MM18448.pdf.
Full textVallala, Venkat. "Alternative Least-Squares Finite Element Models of Navier-Stokes Equations for Power-Law Fluids." 2009. http://hdl.handle.net/1969.1/ETD-TAMU-2009-05-575.
Full textLai, Qing-Xian, and 賴慶賢. "Simulation of Two-Dimension Shallow Water Equation By The Least-Squares Finite Element Method." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/52353771629982055017.
Full text中原大學
土木工程研究所
90
ABSTRACT This study is focused on the numerical simulation of discontinuous free surface problems such as the supercritical shock waves flowing on various geometries and the flow field of a broken dam. The Least-square finite element method (LSFEM) is adopted for the simulation of two-dimensional nonlinear shallow water equation. The simulation of supercritical shock waves in the following five different geometries: one-side oblique contraction channel, one-side oblique expansion channel, a oblique contraction-expansion channel, curved contraction expansion and curved contraction channel are evaluated by the theoretical solution, and the simulated results of previous published data. The dam break problems are also simulated with the reservoir water depth ratio of 10/5 in one dimension dam break and 10/9, 2, and 1 in partial dam break. The simulated results are shown to be in good agreement with analytical solution and numerical results of other methods. This paper demonstrates that the LSFEM can effectively simulate the supercritical shock waves and dam break flow with discontinuous free surface. Key words:least-square finite element method、shallow water equation 、supercritical flow、partial dam break
Danisch, Garvin [Verfasser]. "Gemischte Finite-element-least-squares-Methoden für die Flachwassergleichungen mit kleiner Viskosität / von Garvin Danisch." 2007. http://d-nb.info/983833052/34.
Full textKumar, Rajeev. "A least-squares/Galerkin split finite element method for incompressible and compressible Navier-Stokes equations." 2008. http://hdl.handle.net/10106/1121.
Full textWang, Yun-Tsz, and 王韻詞. "On Two Iterative Least-Squares Finite Element Schemes for Solving the Incompressible Navier-Stokes Equations." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/z3jr42.
Full text國立中央大學
數學研究所
96
This thesis is devoted to a numerical study of two iterative least-squares finite element schemes on uniform meshes for solving the stationary incompressible Navier-Stokes equations with velocity boundary condition. Introducing vorticity as an additional unknown variable, the Navier-Stokes problem can be recast as a first-order quasilinear velocity-vorticity-pressure system. Two Picard-type iterative least-squares finite element schemes are proposed for approximating the solution to the nonlinear first-order problem. In each iteration, we apply the usual L2 least-squares scheme or a weighted L2 least-squares scheme to solve the corresponding Oseen problem. We concentrate on two-dimensional model problems using continuous piecewise polynomial finite elements on uniform meshes for both iterative least-squares schemes. Numerical evidences show that, for the same test problem with smooth exact solution, the L2 least-squares solutions are more accurate than the weighted L2 least-squares solutions for low Reynolds number flows, while for flows with relatively higher Reynolds numbers the weighted L2 least-squares approximations seem to be better than the L2 least-squares approximations. Finally, numerical results for driven cavity flows are also given to demonstrate the effectiveness of the iterative least-squares finite element approach.
Kao, Shih-Chao, and 高仕超. "Some Residual-Free Bubble Enrichment Least-Squares Finite Element Method for the Convection-Diffusion Equation." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/z55z24.
Full text國立中央大學
數學研究所
96
In this thesis, we formulate the least-squares finite element method using piececewise linears to solve the convection-diffusion equation which is convection-dominated and we find that the solution is diffusive and the classical mesh refinement for the least-squares finite element method is not an economical method. Then we use the residual-free bubble method to enrich the least-squares finite element method. This is a new application of residual-free bubble method and we solve some test problems. The numerical results show that the residual-feee bubble method for the least-squares finite element method has a good effect of enrichment。