Academic literature on the topic 'Lecithins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lecithins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lecithins"
Lisovaya, Ekaterina, Elena Viktorova, Mariet Zhane, Olga Vorobyova, and Elena Velikanova. "Research of the chemical composition peculiarities of food additives – vegetable lecithins for the development of methods for assessing their quality." BIO Web of Conferences 34 (2021): 06009. http://dx.doi.org/10.1051/bioconf/20213406009.
Full textButina, Elena. "Comparative Rheological Properties of Soy Lecithins Produced in Russia." Bioscience Biotechnology Research Communications 14, no. 4 (December 25, 2021): 1861–70. http://dx.doi.org/10.21786/bbrc/14.4.71.
Full textAlhajj, Maria J., Nicolle Montero, Cristhian J. Yarce, and Constain H. Salamanca. "Lecithins from Vegetable, Land, and Marine Animal Sources and Their Potential Applications for Cosmetic, Food, and Pharmaceutical Sectors." Cosmetics 7, no. 4 (November 9, 2020): 87. http://dx.doi.org/10.3390/cosmetics7040087.
Full textArora, Harshika, Mitch D. Culler, and Eric A. Decker. "Production of a High-Phosphatidylserine Lecithin That Synergistically Inhibits Lipid Oxidation with α-Tocopherol in Oil-in-Water Emulsions." Foods 11, no. 7 (March 30, 2022): 1014. http://dx.doi.org/10.3390/foods11071014.
Full textAgafonov, O. S., E. V. Lisovaya, S. M. Prudnikov, and E. P. Victorova. "Development of standard samples-simulators of weight fraction of acetone insoluble substances in rapeseed lecithins." New Technologies, no. 4 (November 18, 2020): 13–21. http://dx.doi.org/10.47370/2072-0920-2020-15-4-13-21.
Full textShestakova, E. A., D. S. Raspopov, and E. I. Verboloz. "Development of flow technology for the purification and production of food sunflower phospholipids." Proceedings of the Voronezh State University of Engineering Technologies 81, no. 1 (July 18, 2019): 125–31. http://dx.doi.org/10.20914/2310-1202-2019-1-125-131.
Full textHasan, Mahmoud, Kamil Elkhoury, Nabila Belhaj, Cyril Kahn, Ali Tamayol, Muriel Barberi-Heyob, Elmira Arab-Tehrany, and Michel Linder. "Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin on MCF-7 Breast Cancer Cells." Marine Drugs 18, no. 4 (April 17, 2020): 217. http://dx.doi.org/10.3390/md18040217.
Full textDohnal, J. C., L. J. Bowie, and H. J. Burstein. "Degree of unsaturation of the fatty acid chains of phospholipids influences the fluorescence polarization: implications for evaluating fetal lung maturity." Clinical Chemistry 32, no. 3 (March 1, 1986): 425–28. http://dx.doi.org/10.1093/clinchem/32.3.425.
Full textLisovaya, E. V., E. P. Viktorova, A. V. Sverdlichenko, and M. R. Zhane. "Investigation of the efficiency of the application of modified vegetable oil lecithins for the creation of encapsulated forms of micronutrients in the form of nanoemulsions." New Technologies 18, no. 2 (July 3, 2022): 73–80. http://dx.doi.org/10.47370/2072-0920-2022-18-2-73-80.
Full textAndrade, Johana, Chelo González-Martínez, and Amparo Chiralt. "Liposomal Encapsulation of Carvacrol to Obtain Active Poly (Vinyl Alcohol) Films." Molecules 26, no. 6 (March 13, 2021): 1589. http://dx.doi.org/10.3390/molecules26061589.
Full textDissertations / Theses on the topic "Lecithins"
Malik, Shagufta. "The behaviour of surfactants in nonaqueous media." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299582.
Full textHeift, Claudia. "Zusammensetzung und Funktionalität des Lecithins aus Rapssaaten für erweiterte Anwendungen im Lebensmittelbereich." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=984535756.
Full textMackie, Andrew C. "Lecithin-stabilised silica dispersions in non-aqueous media." Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236022.
Full textWettstein, Hans-Rudolf. "Influence of plant lecithins on rumen fermentation, lipid digestion and quality of milk and body fat in cattle /." [S.l.] : [s.n.], 2000. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13721.
Full textSoares, Marinalda da Silva. "Processamento de oleo de soja utilizando ultrafiltração em miscela na etapa de degomagem e na obtenção de lecitina." [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254701.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-03T21:14:27Z (GMT). No. of bitstreams: 1 Soares_MarinaldadaSilva_D.pdf: 1635248 bytes, checksum: f576efc88ef55b05d1817c84d8468ee7 (MD5) Previous issue date: 2004
Resumo: Tradicionalmente o óleo de soja bruto é degomado por adição de água ou solução ácida. A tecnologia de membranas aplicada ao processamento de óleos vegetais tem se tornado importante, pois utiliza baixas temperaturas, não necessita de tratamento de águas residuais, retém compostos indesejáveis, além de preservar compostos minoritários importantes no óleo. Os objetivos deste trabalho foram otimizar as condições de ultrafiltração de miscela de óleo de soja bruto como alternativa à degomagem clássica, avaliar as características físico-químicas e sensoriais do óleo degomado e desodorizado em escala piloto e obter lecitina de soja através da concentração do retentado. A ultrafiltração da miscela foi realizada à 40 ºC, em unidade piloto NETZSCH utilizando duas membranas cerâmicas em alumina, pré-condicionadas, com diâmetro de poro de 0,01mm, de 19 e 37 canais. O efeito da pressão transmembrana e do teor de fósforo na alimentação foram avaliados com relação ao fluxo de permeado e retenção de fosfolipídios. A faixa de pressão transmembrana utilizada nos tratamentos foi de 0,6 a 2,0 bar, sob velocidade tangencial de 3,5 m/s. Foi estabelecido um planejamento experimental fatorial 22 completo, com 3 pontos centrais e 4 pontos axiais, para cada membrana. O teor de fósforo na alimentação não exerceu efeito considerável no percentual de retenção, entretanto teve efeito negativo sobre o fluxo de permeado nas duas membranas. Valores maiores de pressão transmembrana favoreceram o aumento de fluxo e de retenção para membrana de 19 canais. Entretanto, para membrana de 37 canais, apenas a retenção foi favorecida pelo aumento da pressão, sendo que um grande aumento da pressão (acima de 1,5 bar) para esta membrana, teria efeito negativo sobre o seu fluxo. Os premeados obtidos nos tratamentos que apresentaram melhor retenção de fosfolipídios (>98%) para as duas membranas, ou seja, valores de fósforo abaixo do nível máximo exigido pela indústria de 10 mg.kg-1, foram desodorizados em unidade piloto de desodorização com vaso de inox encamisado de 3 litros, sob vácuo de 12 mmHg, a 230ºC, por 90 minutos, utilizando nitrogênio como gás de arraste. Após determinações físico químicas que asseguraram a qualidade, os produtos obtidos foram levados à analise sensorial de aceitação ao nível de consumidor e comparados com um óleo de soja refinado comercial. Os óleos desodorizados obtidos não apresentaram diferença significativa (p £ 0,05) entre si e comparados ao óleo de soja refinado comercial para os atributos aroma e sabor. A lecitina obtida a partir da ultrafiltração dos retentados estava de acordo com os padrões do Food Chemical Codex, com 53 % de insolúveis em acetona
Abstract: Crude soybean oil is traditionally degummed by water addition or phosphoric acid. The membrane technology applied to vegetable oils processing has become important because it allows to use temperatures, reduces waste water treatment, retains undesirable products, besides preserving important minor compounds in the oil. The objectives of this work were to optimize the conditions of crude soybean oil micelle ultra filtration as an alternative to the traditional degumming, evaluate the physical-chemical and sensorial characteristics of the degummed and deodorized oil in pilot plant scale and to obtain soy lecithin through retentate concentration. The ultrafiltration was accomplished at 40o C, in a NETZSCH pilot unit utilizing two pre-conditioned ceramic in alumina membranes with 0.01 mm pore diameter of 19 and 37 channels. The feed transmembrane pressure effect and the phosphorous content were evaluated regarding to the permeate flux and retention of phospholipids. The transmembrane pressure range used in the treatments was from 0.6 to 2.0 bar under tangential velocity of 3.5m/s. A complete 22 experimental design was established with 3 central points and 4 axial points for each membrane. The phosphorous content has not carried on considerable effect in the retention, nevertheless it had a negative effect over the permeate flux in the two membranes. Greater transmembrane pressure values favor the flux and retention increase in the 19 channels membrane. However in 37 channels membranes only the retention was favored by the increasing pressure while, a great pressure increase (above 1.5 bar), presented a negative effect on the its flux. The treatments that showed better phospholipids retention (>98%) for the two membranes, phosphorous values below the maximum level of 10 mg/kg required by the industry were deodorized in a deodorization pilot unity with stainless steel jacketed reactor with 3 liters capacity, under 12 mmHg vacuum, at 230 ºC, for 1.5 hours, using nitrogen as carrier gas. After physical-chemical determinations that assured the quality, the obtained products were analyzed regarding to the sensorial acceptance at the consumer level and compared with commercial soybean refined oil. The statistical analysis have not shown significative difference (p £ 0.05) among the two desodorized oils and commercial soybean neutrative-bleached-desodorized oil for the aroma and flavor atributes. The obtained lecithin was in accordance with the standards of Food Chemical Codex, with 53% of acetone insoluble
Doutorado
Doutor em Tecnologia de Alimentos
Fernandes, Gabriel Deschamps 1988. "Caracterização de lecitinas comerciais por espectrometria de massas ambiente com ionização sonic-spray." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256072.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-19T21:15:47Z (GMT). No. of bitstreams: 1 Fernandes_GabrielDeschamps_M.pdf: 1854677 bytes, checksum: e57833484e8f9ad4a136187bed59d8d2 (MD5) Previous issue date: 2012
Resumo: Os fosfolipídios são definidos como o grupo de moléculas que contém um grupamento fosfato. Por apresentarem características anfipáticas, este grupo de moléculas se organiza naturalmente em bicamadas, originando as membranas dos seres vivos. Industrialmente são capazes de estabelecer interfaces óleo/água, possibilitando a formação e estabilização de emulsões. Este grupo de moléculas é bastante diverso quimicamente, sendo os principais componentes a fosfatidilcolina, fosfatidiletanolamina, fosfatidilserina, fosfatidilinositol, ácido fosfatídico e esfingomielina. A determinação e quantificação desses compostos é bastante laboriosa tanto nos meios industriais como acadêmicos, envolvendo, entre outras, etapas de digestão ácida e incineração. A espectrometria de massas desponta como uma técnica bastante favorável à análise de lipídios, englobando desde estudos clínicos até de biocombustíveis. Mais recentemente, as técnicas de espectrometria de massas com ionização ambiente facilitaram o acesso a este tipo de tecnologia, diminuindo os custos de implantação e principalmente de operação. A ionização ambiente por sonic-spray (EASI, easy ambient sonic-spray ionization) denota-se como uma técnica adequada à análise de lipídios, uma vez que não aplica alta voltagem e alta temperatura, prevenindo, portanto possíveis degradações destas moléculas. Este trabalho teve como objetivo, estudar a ionização de fosfolipídios (PL) e triacilgliceróis (TAG) frente à técnica EASI-MS, bem como, estudar a viabilidade técnica da caracterização de lecitinas comerciais por meio da técnica EASI-MS. Quanto à ionização dos lipídios, foi possível observar, nas condições de estudo, que dentro de uma mesma classe (PL ou TAG) a intensidade de ionização diminui com o aumento da cadeia dos ácidos graxos e aumenta com o aumento das insaturações. Para o estudo de caracterização foram utilizadas seis amostras de lecitina de soja comercial, obtidas por diferentes processos. As amostras foram diluídas em clorofórmio e submetidas à análise de EASI-MS, nos modos positivo e negativo. Nos espectros de EASI(+)-MS, os íons mais representativos foram os íons correspondentes à fosfatidilcolina e aos triacilgliceróis, enquanto que, nos espectros de EASI(-)-MS os íons mais representativos corresponderam à fosfatidiletanolamina, aos ácidos graxos livres e aos glicofosfolipídios. A técnica EASI-MS mostrou-se eficiente na caracterização das lecitinas comerciais. Sendo uma técnica rápida e que não exige preparo de amostra
Abstract: Phospholipids are defined as the group of molecules containing a phosphate grouping. As they have amphipathic characteristics, this group of molecules naturally organizes bilayer, origin the membranes of living organism and are able to establish an industrial oil / water interface, allowing the formation and stabilization of emulsions. This group of molecules is very chemically different; the main components are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid and sphingomyelin. The determination and quantification of these compounds is very laborious for the academic and industrial circles, involving, among others, several steps, like acid digestion and incineration. Mass spectrometry is emerging as a very favorable tool of lipids analysis, since clinical and biofuel studies. Recently, the techniques of ambient mass spectrometry have facilitated the access to this type of technology, reducing deployment costs and especially the operation. Easy ambient sonic-spray ionization (EASI) denotes as a suitable technique to analyze the lipids, since it does not apply high voltage and high temperature, and thereby prevent possible degradation of these molecules. This work aimed to study the ionization of phospholipids (PL) and triacylglycerols (TAG) in EASIMS technique, as well as studying the technical feasibility of the characterization of commercial lecithins by EASI-MS. On the lipid ionization, it was observed, under the conditions of the study, that within the same class (TAG or PL) the ionization intensity decreases with increasing of fatty acids chains and increases with increasing of unsaturation. For characterization studies were used six samples of commercial soy lecithin, obtained by different processes. Samples were diluted in chloroform and analyzed for EASI-MS in positive and negative ion modes. In the spectra of EASI (+)- MS, the most representing ions are corresponding to triglycerides and phosphatidylcholine, whereas in the spectra of EASI (-)-MS the most representative ions correspond to the phosphatidylethanolamine, the free fatty acids and glicophospholipidios. The EASI-MS technique was efficient in the characterization of commercial lecithins. As a fast technique and does not require sample preparation
Mestrado
Tecnologia de Alimentos
Mestre em Tecnologia de Alimentos
Svensson, B. Martin. "Lipase catalysis in lecithin-stabilised microemulsions." Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406836.
Full textBeattie, Stuart Gavin. "Lecithin colesterol ACYL transferase gene transfer studies." Thesis, Royal Holloway, University of London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409233.
Full textGhazi, Samira. "Factors influencing expression of lecithin : cholesterol acyltransferase." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322763.
Full textChamberlin, Richard Addison. "Light scattering studies on lecithin micellar solution." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13859.
Full textBooks on the topic "Lecithins"
F, Szuhaj Bernard, ed. Lecithins: Sources, manufacture & uses. Champaign, Ill: American Oil Chemists' Society, 1989.
Find full textHanin, Israel, and G. Brian Ansell, eds. Lecithin. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-1933-8.
Full textInternational Colloquium on Lecithin (4th 1986 Chicago, Ill.). Lecithin: Technological, biological, and therapeutic aspects. New York: Plenum Press, 1987.
Find full textWilliam, Shurtleff. Bibliography of lecithin: 683 references from 1793 to 1990, extensively annotated. Lafayette, CA, USA: Soyfoods Center, 1990.
Find full textCirkel, Peter Albert. Structure and dielectric properties of lecithin organogels. [Leiden: University of Leiden, 1998.
Find full textLecithin and health: [brain nutrients--phosphatidyl choline and serine]. [Bloomingdale, IL: Vital health Publishing, 1998.
Find full textNao nei shi pin luan lin zhi: Ben shi ji zui da de tou nao shi pin. Taibei Shi: Guo ji cun wen ku shu dian you xian gong si, 2000.
Find full textJacobs, Michael. The effect of lecithin on the topical delivery of corticosteroids. [Brighton: Brighton Polytechnic, Dept. of Pharmacy], 1987.
Find full textParker, James N., and Philip M. Parker. Lecithin: A medical dictionary, bibliography, and annotated research guide to internet references. San Diego, CA: ICON Health Publications, 2004.
Find full textPolar lipids: Biology, chemistry, and technology. Urbana, Illinois: AOCS Press, 2015.
Find full textBook chapters on the topic "Lecithins"
Bueschelberger, Hanns-Georg, Susanne Tirok, Ilona Stoffels, and Arnulf Schoeppe. "Lecithins." In Emulsifiers in Food Technology, 21–60. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118921265.ch2.
Full textTrahms, Lutz. "NMR Studies of the Gel Phase of Lecithins and Cephalins." In Structure and Dynamics of Molecular Systems, 203–24. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5351-2_13.
Full textHerslöf, Bengt, Urban Olsson, and Per Tingvall. "Characterization of Lecithins and Phospholipids by HPLC with Light Scattering Detection." In Phospholipids, 295–98. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-1364-0_29.
Full textSimon, Sidney A., Thomas J. Mclntosh, and Michael L. Hines. "The Influence of Anesthetics on the Structure and Thermal Properties of Saturated Lecithins." In Molecular and Cellular Mechanisms of Anesthetics, 297–308. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5033-0_24.
Full textDeBose, C. D., R. A. Burns, and M. F. Roberts. "Micellar Systems for Defining the Active Site of Phospholipase-A2: Methyl Branching in Short-Chain Lecithins." In Surfactants in Solution, 917–29. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-7981-6_30.
Full textBährle-Rapp, Marina. "Lecithin." In Springer Lexikon Kosmetik und Körperpflege, 317. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_5943.
Full textGooch, Jan W. "Lecithin." In Encyclopedic Dictionary of Polymers, 424. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6860.
Full textRossi, Margherita. "Use of Lecithin and Lecithin Fractions." In Bioactive Egg Compounds, 229–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-37885-3_27.
Full textHertrampf, Joachim W., and Felicitas Piedad-Pascual. "Soya Lecithin." In Handbook on Ingredients for Aquaculture Feeds, 383–95. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4018-8_41.
Full textKozakiewicz, Elzbieta, and Daniel Cossuta. "Emulsions: Lecithin." In Handbook of Molecular Gastronomy, 249–56. First edition. | Boca Raton: CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429168703-37.
Full textConference papers on the topic "Lecithins"
Tupolskikh, T. I., V. A. Serdyuk, T. A. Maltseva, S. A. Lomakina, and A. A. Kuts. "COMPARATIVE CHARACTERISTICS OF TECHNOLOGICAL PROPERTIES OF SOY AND SUNFLOWER LECITHINS AS A FOOD ADDITIVE E322." In INNOVATIVE TECHNOLOGIES IN SCIENCE AND EDUCATION. DSTU-Print, 2020. http://dx.doi.org/10.23947/itno.2020.417-420.
Full textRudolph, A. S., P. E. Schoen, M. Nagumo, F. Behroozi, T. G. Burke, M. E. Ayers, A. Singh, and R. Treanor. "Spectroscopic Studies Of Tubule-Forming Polymerizable Lecithins." In OE/LASE '89, edited by Robert R. Birge and Henry H. Mantsch. SPIE, 1989. http://dx.doi.org/10.1117/12.951648.
Full textTomas, Mabel, Claudia Copado, Luciana Julio, and Vanesa Ixtaina. "Strategies for protecting functional components of chia oil by emulsion-based delivery systems with sunflower lecithin." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/dxsl3212.
Full textDhara, Olivia, and Pradosh Chakrabarti. "Rice Bran Lyso-gums: The Unexplored Source of Potential Industrial Phospholipid." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/keww1142.
Full textTzompa Sosa, Daylan. "Insects as a Novel Source of Lecithin." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.136.
Full textBaranova, Z. A., and I. B. Krasina. "INFLUENCE OF LECITHIN ON ORGANOLEPTIC PROPERTIES OF GLAZES." In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS. DSTU-PRINT, 2020. http://dx.doi.org/10.23947/interagro.2020.1.369-372.
Full textAngelsky, Oleg V., and Peter P. Maksimyak. "Polarization interferometry assessment of the water-lecithin system." In OE/LASE '92, edited by Halina Podbielska. SPIE, 1992. http://dx.doi.org/10.1117/12.60211.
Full textCuller, Mitchell, Eric Decker, and Ipek Bayram. "Enzymatic modification of lecithin for improved antioxidant activity in combination with tocopherol in emulsions and bulk oil." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/dsey3101.
Full textPark, S., N. Ha, J. Kim, and C. Kim. "Size-controlled Iron Nanoparticles with Lecithin for Biomedical Applications." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376266.
Full textMaksimyak, Peter P. "Dynamics of the refraction index in a water-lecithin mixture." In International Conference on Correlation Optics, edited by Oleg V. Angelsky. SPIE, 1997. http://dx.doi.org/10.1117/12.295705.
Full textReports on the topic "Lecithins"
Zhang, Shu, Tong Wang, and Donald C. Beitz. Soy Lecithin but Not Egg Lecithin Decreased the Plasma Cholesterol Concentration in Golden Syrian Hamsters. Ames (Iowa): Iowa State University, January 2006. http://dx.doi.org/10.31274/ans_air-180814-128.
Full textAyres, Benjamin. Use of Soybean Lecithin in Shape Controlled Synthesis of Gold Nanoparticles. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.628.
Full textPaulis, Malkanthi. Electrical Conductivity of Thin Lecithin-cholesterol Membranes due to 2,4-D, 2,4-DB, 2,4,5-T and 2,4-DCP. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2552.
Full textSu, Dan. The Role of Lecithin: Retinol Acyltransferase (LRAT) Mediated Esterification of Vitamin A in Regulating Human Breast Cancer Cell Proliferation and Differentiation. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada435637.
Full textKanner, Joseph, Edwin Frankel, Stella Harel, and Bruce German. Grapes, Wines and By-products as Potential Sources of Antioxidants. United States Department of Agriculture, January 1995. http://dx.doi.org/10.32747/1995.7568767.bard.
Full text