Academic literature on the topic 'Left ventricular trabeculation model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Left ventricular trabeculation model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Left ventricular trabeculation model"
Sigvardsen, Per E., Andreas Fuchs, Jørgen T. Kühl, Shoaib Afzal, Lars Køber, Børge G. Nordestgaard, and Klaus F. Kofoed. "Left ventricular trabeculation and major adverse cardiovascular events: the Copenhagen General Population Study." European Heart Journal - Cardiovascular Imaging 22, no. 1 (May 9, 2020): 67–74. http://dx.doi.org/10.1093/ehjci/jeaa110.
Full textBreckenridge, Ross A., Robert H. Anderson, and Perry M. Elliott. "Isolated left ventricular non-compaction: the case for abnormal myocardial development." Cardiology in the Young 17, no. 2 (February 26, 2007): 124–29. http://dx.doi.org/10.1017/s1047951107000273.
Full textHirono, Keiichi, Yukiko Hata, Nariaki Miyao, Mako Okabe, Shinya Takarada, Hideyuki Nakaoka, Keijiro Ibuki, et al. "Left Ventricular Noncompaction and Congenital Heart Disease Increases the Risk of Congestive Heart Failure." Journal of Clinical Medicine 9, no. 3 (March 13, 2020): 785. http://dx.doi.org/10.3390/jcm9030785.
Full textStöllberger, Claudia, and Josef Finsterer. "Trabeculation and left ventricular hypertrabeculation/noncompaction." Journal of the American Society of Echocardiography 17, no. 10 (October 2004): 1120–21. http://dx.doi.org/10.1016/j.echo.2004.06.009.
Full textD’Silva, Andrew. "Physical Activity–Related Left Ventricular Trabeculation." Journal of the American College of Cardiology 77, no. 5 (February 2021): 662–63. http://dx.doi.org/10.1016/j.jacc.2020.11.054.
Full textStöllberger, Claudia, Josef Finsterer, Ferdinand Rudolf Waldenberger, Johann Andreas Hainfellner, and Robert Ullrich. "Intramyocardial hematoma mimicking abnormal left ventricular trabeculation." Journal of the American Society of Echocardiography 14, no. 10 (October 2001): 1030–32. http://dx.doi.org/10.1067/mje.2001.115688.
Full textMcNally, Elizabeth M., and Amit R. Patel. "Cardiac Magnetic Resonance of Left Ventricular Trabeculation." Circulation: Cardiovascular Imaging 4, no. 2 (March 2011): 84–86. http://dx.doi.org/10.1161/circimaging.110.962472.
Full textFernández-Golfín, Covadonga, and José Zamorano Gómez. "Left ventricular trabeculation assessment with cardiac magnetic resonance." Journal of Cardiovascular Medicine 11, no. 7 (July 2010): 477. http://dx.doi.org/10.2459/jcm.0b013e32833833bc.
Full textShieh, Joseph T. C., John L. Jefferies, and Alvin J. Chin. "Disorders of left ventricular trabeculation/compaction or right ventricular wall formation." American Journal of Medical Genetics Part C: Seminars in Medical Genetics 163, no. 3 (July 10, 2013): 141–43. http://dx.doi.org/10.1002/ajmg.c.31370.
Full textGati, Sabiha, Ahmed Merghani, and Sanjay Sharma. "Increased Left Ventricular Trabeculation Does Not Necessarily Equate to Left Ventricular Noncompaction in Athletes." JAMA Internal Medicine 175, no. 3 (March 1, 2015): 461. http://dx.doi.org/10.1001/jamainternmed.2014.7186.
Full textDissertations / Theses on the topic "Left ventricular trabeculation model"
Paun, Bruno. "Image based analysis and modeling of the detailed cardiac ventricular anatomy." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/456042.
Full textEl papel de las trabéculas cardíacas y su morfología normal en el corazón humano todavía es desconocido. Estudios clínicos han demostrado que la trabeculacíon excesiva puede causar insuficiencia cardíaca debido a disfunción diastólica y sistólica, tromboembolismo y arritmias. El modelado y cuantificación de estas nos puede dar una idea de su función, su influencia en el rendimiento cardíaco y también su conexión con cardiomiopatías. Las contribuciones de la presente tesis son los siguientes: 1) un modelo simplificado del ventrículo izquierdo trabeculado para estudiar el impacto de las trabéculas sobre el volumen, la deformación y el gasto cardíaco de los ventrículos con diferentes geometrías, 2) un método simplificado, así como un método más complejo para la parametrización independiente de la geometría cardíaca detallada de los ventrículos izquierdo y derecho, 3) un framework para la visualización y el análisis estadístico de las trabeculaciones, y 4) un análisis longitudinal de las trabéculas cardíacas en un embrión de ratón en diferentes etapas gestacionales.
Frandon, Julien. "IRM cardiaque : mise au point d'un logiciel semi-automatique pour l'étude de la trabéculation du ventricule gauche Semiautomatic detection of myocardial contours in order to investigate normal values of the left ventricular trabeculated mass using MRI Semi-automatic detection of myocardial trabeculation using cardiovascular magnetic resonance: correlation with histology and reproducibility in a mouse model of non-compaction." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAS045.
Full textLeft ventricular non-compaction is a rare cardiomyopathy with an incidence of 0,014 % in adult patients. Its prognosis remains little known. Untreated, it can lead to heart failure, cardioembolic events, tachyarythmia, heart transplant and death.Non compaction is suspected on echocardiography or CMR when a characteristic double-layered aspect of the myocardium with a thick, non-compacted endocardial layer, prominent trabeculations and deep recesses are observed, but there is no gold standard for the diagnosis. Some have proposed 2D criteria based on ratios of lengths between compacted and non compacted layers evaluated by sonography or MRI. Jacquier and al have proposed a quantification of the total amount of LV trabeculation on CMR but with a manual contouring including blood inside the trabeculae.Our purpose was the development of a semi-automatic software package to calculate the non-compacted mass that suppresses blood from the trabeculae and evaluates the total amount of compacted and non compacted mass. The feasibility of this trabeculation quantification algorithm was illustrated in multicenter, multivendor 1,5 and 3 T MRI. The software allows a precise and reproductible segmentation in about 15 mins. The quantification software was compared with histology, and tested for accuracy and reproducibility in a mouse model of non-compaction. The software was tested in a large cohort of healthy subjects to provide the range of normal values of trabeculae across age and gender. Clinical validation on patients with non compaction is in progress
Remme, Espen W. "A Model-based Approach for Clinical Evaluation of Left Ventricular Deformation." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-249.
Full textAssessment of left ventricular (LV) deformation is essential for clinical evaluation of LV function and cardiac images are frequently used to evaluate the LV motion and function. By combining the images with mathematical models more information may be extracted from the images. The work presented in this thesis has focused on using the finite element (FE) method to describe the LV and its deformation and combining this method with images of the heart to extract more information about the deformation.
We developed a method that estimated the LV deformation by manually tracking distinct anatomical landmarks (fiducial markers) through the cardiac cycle in 3 dimensional (3D) images of the heart. The motion of the nodal parameters of an FE mesh shaped to the geometry of the LV was fitted to the motion of the fiducial markers and thus provided a means to describe the motion. The sparsity of the fiducial markers made the fitting problem under-constrained so a parameter distribution model (PDM) of likely motions were constructed from a historical database of cases where FE meshes had been fitted to the motion of magnetic resonance (MR) tagged data. The estimated deformation from the fiducial marker fitting was filtered through the PDM and the resulting deformation corresponded well when compared to the deformation obtained from MR tagging in 13 normal subjects.
A method that decomposed the LV deformation into different deformation modes such as longitudinal shortening, wall thickening, and twisting was developed. The nodes of a subject’s LV FE mesh were displaced according to each deformation mode and the relative contribution of each mode to the total deformation measured by MR tagging was quantified by calculating a coefficient for each mode. A study that compared 13 young normal subjects with 13 older diabetes patients showed that the patients had a significantly lower degree of longitudinal shortening and wall thickening but a higher degree of longitudinal twist.
The LV deformation is influenced by cardiac disease via the material properties of the myocardium. We investigated the effects of the material parameter values on the LV deformation in a simulation study using an FE model of the LV. A description of the myocardial microstructure and a passive and active constitutive law was included in the model. The cardiac cycle was simulated from the beginning of diastasis through to the end of ejection by applying appropriate boundary conditions. The different deformation modes between end diastole and end systole were extracted and quantified for different sets of material parameters. We found that stiffer material properties particularly in the myocardial sheet direction impaired longitudinal shortening and wall thickening.
A sensitivity analysis was carried out to look at the various material parameters’ influence on LV wall strains during passive inflation. The analysis showed a high degree of coupling of the parameters in the constitutive law, which indicated an overparameterization of the law. A parameter estimation study revealed the same problem. Most of the parameters were set to constant values and only one parameter in each of the three microstructural directions were estimated during the passive inflation phase using synthetic strain data as measurements. This still gave good estimates of the stress-strain relationships in the fiber and sheet directions.
Papers I and II reprinted with kind permission of Elsevier, ScienceDirect
Au, Colin L. "Left ventricular volume estimation from radionuclide images using an ellipsoidal model." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ34160.pdf.
Full textGonzalez, Erick. "Development of a three-dimensional model of left ventricular flow dynamics." FIU Digital Commons, 1994. https://digitalcommons.fiu.edu/etd/3980.
Full textA'roch, Roman. "Left ventricular function's relation to load, experimental studies in a porcine model." Doctoral thesis, Umeå universitet, Anestesiologi och intensivvård, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-43605.
Full textNagasawa, Atsushi. "Basic fibroblast growth factor attenuates left-ventricular remodeling following surgical ventricular restoration in a rat ischemic cardiomyopathy model." Kyoto University, 2020. http://hdl.handle.net/2433/259712.
Full textSpotswood, Timothy C. "Echocardiographic changes of left ventricular size and function in a canine normovolaemic anaemia model." Diss., University of Pretoria, 2006. http://hdl.handle.net/2263/23732.
Full textDissertation (MMedVet(Diagnostic Imaging))--University of Pretoria, 2005.
Companion Animal Clinical Studies
unrestricted
Ding, Tong. "Development and experimental verification of a three-dimensional model of left ventricular flow dynamics." FIU Digital Commons, 1997. http://digitalcommons.fiu.edu/etd/2822.
Full textWilson, Gayle. "Alterations in myofilament properties in a rabbit coronary artery ligation model of left ventricular dysfunction." Thesis, University of Glasgow, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265534.
Full textBooks on the topic "Left ventricular trabeculation model"
Szilard, Monika. Novel Non-Surgical Porcine Model of Chronic Left Ventricular Dysfunction: Identification of Myocardial Viability Using Different Diagnostic Techniques (Acta Biomedica Lovaniensia, 242). Leuven Univ Pr, 2001.
Find full textO’Mahony, Constantinos. Hypertrophic cardiomyopathy: prevention of sudden cardiac death. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0354.
Full textMcQuarrie, Emily P., Hallvard Holdaas, Bengt Fellström, and Alan G. Jardine. Cardiovascular disease. Edited by Jeremy R. Chapman. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0285.
Full textRowland, Thomas W. Cardiovascular function. Edited by Neil Armstrong and Willem van Mechelen. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198757672.003.0011.
Full textSinagra, Gianfranco, Marco Merlo, and Davide Stolfo. Dilated cardiomyopathy: clinical diagnosis and medical management. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0356.
Full textWhitworth, Caroline, and Stewart Fleming. Malignant hypertension. Edited by Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0216.
Full textBook chapters on the topic "Left ventricular trabeculation model"
Wu, Jimmy Ming-Tai, Meng-Hsiun Tsai, Sheng-Han Xiao, and Tsu-Yang Wu. "Construct Left Ventricular Hypertrophy Prediction Model Based on Random Forest." In Recent Advances in Intelligent Information Hiding and Multimedia Signal Processing, 142–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03745-1_18.
Full textPonnaluri, Aditya V. S., Ilya A. Verzhbinsky, Jeff D. Eldredge, Alan Garfinkel, Daniel B. Ennis, and Luigi E. Perotti. "Model of Left Ventricular Contraction: Validation Criteria and Boundary Conditions." In Functional Imaging and Modeling of the Heart, 294–303. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21949-9_32.
Full textRondanina, Emanuele, and Peter Bovendeerd. "A Simple Multi-scale Model to Evaluate Left Ventricular Growth Laws." In Functional Imaging and Modeling of the Heart, 249–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21949-9_27.
Full textMedrano-Gracia, Pau, Brett R. Cowan, David A. Bluemke, J. Paul Finn, João A. C. Lima, Avan Suinesiaputra, and Alistair A. Young. "Large Scale Left Ventricular Shape Atlas Using Automated Model Fitting to Contours." In Functional Imaging and Modeling of the Heart, 433–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38899-6_51.
Full textUbbink, Sander, Peter Bovendeerd, Tammo Delhaas, Theo Arts, and Frans van de Vosse. "Left Ventricular Shear Strain in Model and Experiment: The Role of Myofiber Orientation." In Functional Imaging and Modeling of the Heart, 314–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11494621_32.
Full textHooghoudt, T. E. H., C. J. Slager, J. H. C. Reiber, and P. W. Serruys. "Quantitation of Regional Left Ventricular Function Using the Endocardial Landmark Model — Clinical Results." In Angiocardiography, 227–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-00820-1_20.
Full textKroon, Wilco, Tammo Delhaas, Peter Bovendeerd, and Theo Arts. "Adaptive Reorientation of Cardiac Myofibers: Comparison of Left Ventricular Shear in Model and Experiment." In Functional Imaging and Modeling of the Heart, 58–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01932-6_7.
Full textRawles, John. "The Haemodynamics of Atrial Fibrillation: The Development of a Model of Left Ventricular Function." In Atrial Fibrillation, 95–114. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-1898-5_5.
Full textCarapella, Valentina, Rafel Bordas, Pras Pathmanathan, Jurgen E. Schneider, Peter Kohl, Kevin Burrage, and Vicente Grau. "Effect of Fibre Orientation Optimisation in an Electromechanical Model of Left Ventricular Contraction in Rat." In Functional Imaging and Modeling of the Heart, 46–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38899-6_6.
Full textDe Craene, Mathieu, Paolo Piro, Nicolas Duchateau, Pascal Allain, and Eric Saloux. "Left Ventricular Shape and Motion Reconstruction Through a Healthy Model for Characterizing Remodeling After Infarction." In Functional Imaging and Modeling of the Heart, 159–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21949-9_18.
Full textConference papers on the topic "Left ventricular trabeculation model"
Palladino, J. L., R. L. Zukus, A. Marchidan, and A. Noordergraaf. "Left ventricular model parameters and cardiac rate variability." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091681.
Full textTehrani, Saeid, Terry E. Weymouth, and G. B. J. Mancini. "Model generation and partial matching of left ventricular boundaries." In Medical Imaging V: Image Processing, edited by Murray H. Loew. SPIE, 1991. http://dx.doi.org/10.1117/12.45240.
Full textMadbouly, Abeer. "Left Ventricular Functional Analysis through Model-Driven Object Labeling in Echocardiograms." In 2006 IEEE International Symposium on Industrial Electronics. IEEE, 2006. http://dx.doi.org/10.1109/isie.2006.295650.
Full textVaes, Mark, Marcel Rutten, René van de Molengraft, and Frans van de Vosse. "Left Ventricular Assist Device Evaluation With a Model-Controlled Mock Circulation." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176372.
Full textLim, Einly, Shaun L. Cloherty, John A. Reizes, David G. Mason, Robert F. Salamonsen, Dean M. Karantonis, and Nigel H. Lovell. "A Dynamic Lumped Parameter Model of the Left Ventricular Assisted Circulation." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353208.
Full textBarochia, AV, Y. Li, J. Su, Y. Fitz, S. Solomon, PQ Eichacker, and X. Cui. "E. coliPneumonia Decreases Left Ventricular Contractility Measures in a Murine Model." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a4702.
Full textKhaledi, Marjan, Roozbeh Abolpour, Mohsen Mohammadi, and Maryam Dehghani. "Data-driven Model Predictive Controller Design for Left Ventricular Assist Devices." In 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). IEEE, 2021. http://dx.doi.org/10.1109/iccia52082.2021.9403602.
Full textBistoquet, Arnaud, and Oskar Skrinjar. "LEFT VENTRICULAR DEFORMATION RECOVERY FROM CINE MRI USING A 4D INCOMPRESSIBLE MODEL." In 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2007. http://dx.doi.org/10.1109/isbi.2007.356822.
Full textGreen, Audrey, and Gary Drzewiecki. "Computational left ventricular heart failure model with patient specific inputs and outputs." In 2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC). IEEE, 2015. http://dx.doi.org/10.1109/nebec.2015.7117167.
Full textLeFevre and Tavernier. "A Generalised Left Ventricular Dynamic Compliance Model: The Chemo-mechanical Capacitive Transducer." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.595624.
Full text