Academic literature on the topic 'Legendre's formula'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Legendre's formula.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Legendre's formula"

1

Lv, Xingxing, and Wenpeng Zhang. "The generalized quadratic Gauss sums and its sixth power mean." AIMS Mathematics 6, no. 10 (2021): 11275–85. http://dx.doi.org/10.3934/math.2021654.

Full text
Abstract:
<abstract><p>In this article, we using elementary methods, the number of the solutions of some congruence equations and the properties of the Legendre's symbol to study the computational problem of the sixth power mean of a certain generalized quadratic Gauss sums, and to give an exact calculating formula for it.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
2

Ayant, F. Y. "On an expansion formula for the multivariable aleph-function involving generalized Legendre's associated function." International Journal of Mathematics Trends and Technology 33, no. 1 (2016): 67–73. http://dx.doi.org/10.14445/22315373/ijmtt-v33p510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

El-Guindy, Ahmad. "Legendre Drinfeld modules and universal supersingular polynomials." International Journal of Number Theory 10, no. 05 (2014): 1277–89. http://dx.doi.org/10.1142/s1793042114500262.

Full text
Abstract:
We introduce a certain family of Drinfeld modules that we propose as analogues of the Legendre normal form elliptic curves. We exhibit explicit formulas for a certain period of such Drinfeld modules as well as formulas for the supersingular locus in that family, establishing a connection between these two kinds of formulas. Lastly, we also provide a closed formula for the supersingular polynomial in the j-invariant for generic Drinfeld modules.
APA, Harvard, Vancouver, ISO, and other styles
4

Sury, B. "Revisiting Kummer’s and Legendre’s formulae." Resonance 10, no. 2 (2005): 62–66. http://dx.doi.org/10.1007/bf02835923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alonso-Blanco, Ricardo J., and Alexandre M. Vinogradov. "Green Formula and Legendre Transformation." Acta Applicandae Mathematicae 83, no. 1/2 (2004): 149–66. http://dx.doi.org/10.1023/b:acap.0000035594.33327.71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ribičić Penava, Mihaela. "Hermite–Hadamard–Fejér-Type Inequalities and Weighted Three-Point Quadrature Formulae." Mathematics 9, no. 15 (2021): 1720. http://dx.doi.org/10.3390/math9151720.

Full text
Abstract:
The goal of this paper is to derive Hermite–Hadamard–Fejér-type inequalities for higher-order convex functions and a general three-point integral formula involving harmonic sequences of polynomials and w-harmonic sequences of functions. In special cases, Hermite–Hadamard–Fejér-type estimates are derived for various classical quadrature formulae such as the Gauss–Legendre three-point quadrature formula and the Gauss–Chebyshev three-point quadrature formula of the first and of the second kind.
APA, Harvard, Vancouver, ISO, and other styles
7

Cohl, Howard S., and Roberto S. Costas-Santos. "Multi-Integral Representations for Associated Legendre and Ferrers Functions." Symmetry 12, no. 10 (2020): 1598. http://dx.doi.org/10.3390/sym12101598.

Full text
Abstract:
For the associated Legendre and Ferrers functions of the first and second kind, we obtain new multi-derivative and multi-integral representation formulas. The multi-integral representation formulas that we derive for these functions generalize some classical multi-integration formulas. As a result of the determination of these formulae, we compute some interesting special values and integral representations for certain particular combinations of the degree and order, including the case where there is symmetry and antisymmetry for the degree and order parameters. As a consequence of our analysi
APA, Harvard, Vancouver, ISO, and other styles
8

Koelink, H. T. "Addition Formula For Big q-Legendre Polynomials From The Quantum Su(2) Group." Canadian Journal of Mathematics 47, no. 2 (1995): 436–48. http://dx.doi.org/10.4153/cjm-1995-024-8.

Full text
Abstract:
AbstractFrom Koornwinder's interpretation of big q-Legendre polynomials as spherical elements on the quantum SU(2) group an addition formula is derived for the big g-Legendre polynomial. The formula involves Al-Salam-Carlitz polynomials, little q-Jacobi polynomials and dual q-Krawtchouk polynomials. For the little q-ultraspherical polynomials a product formula in terms of a big q-Legendre polynomial follows by q-integration. The addition and product formula for the Legendre polynomials are obtained when q tends to 1.
APA, Harvard, Vancouver, ISO, and other styles
9

Meng, Guowu. "Legendre transform, Hessian conjecture and tree formula." Applied Mathematics Letters 19, no. 6 (2006): 503–10. http://dx.doi.org/10.1016/j.aml.2005.07.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Auffinger, Antonio, and Wei-Kuo Chen. "The Legendre Structure of the Parisi Formula." Communications in Mathematical Physics 348, no. 3 (2016): 751–70. http://dx.doi.org/10.1007/s00220-016-2673-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Legendre's formula"

1

Ahmad, Khan Mumtaz, Khan Abdul Hakim, and Naeem Ahmad. "A study of modified Hermite polynomials of two variables." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96096.

Full text
Abstract:
The present paper is a study of modied Hermite polynomials of two variables Hn(x; y; a) which for a = e reduces to Hermite polynomials of two variables Hn(x; y) due to M.A. Khan and G.S. Abukhammash.<br>El presente artculo se estudian polinomios modicados de Hermite de dos variables Hn(x; y; a) que para a = e se reducen a los polinomios de Hermite de dos variables Hn(x; y) introducidos por M.A. Khan y G.S.Abukhammash.
APA, Harvard, Vancouver, ISO, and other styles
2

Benayoun, Loïc. "Méthodes géométriques pour l'étude des systèmes thermodynamiques et la génération d'équations d'état." Phd thesis, Grenoble INPG, 1999. http://tel.archives-ouvertes.fr/tel-00004803.

Full text
Abstract:
Cette thèse traite de l'application de la théorie des structures de contact à la thermodynamique phénoménologique. Nous étudions particulièrement l'utilisation des transformations de contact pour engendrer de nouvelles équations d'état en thermodynamique. Dans la première partie, après des rappels sur les structures de contact, nous nous intéressons aux transformations de contact. Celles-ci sont définies de manière unique par la détermination d'une fonction appelée hamiltonien de contact et permettent de transformer une sous-variété de Legendre d'une forme de contact en une autre. Nous avons é
APA, Harvard, Vancouver, ISO, and other styles
3

Michalik, Jindřich. "Kombinatorické posloupnosti čísel a dělitelnost." Master's thesis, 2018. http://www.nusl.cz/ntk/nusl-373204.

Full text
Abstract:
This work contains an overview of the results concerning number-theoretic pro- perties of some significant combinatorial sequences such as factorials, binomial coef- ficients, Fibonacci and Catalan numbers. These properties include parity, primality, prime power divisibility, coprimality etc. A substantial part of the text should be accessible to gifted high school students, the results are illustrated with examples. 1
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Legendre's formula"

1

Saikia, Jyoti, and C. P. Pandey. "Inversion Formula for the Wavelet Transform Associated with Legendre Transform." In Advances in Intelligent Systems and Computing. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8061-1_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Legendre Polynomials." In Handbook of Formulas and Tables for Signal Processing. CRC Press, 2018. http://dx.doi.org/10.1201/9781315219707-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"GAUSS–LEGENDRE QUADRATURE FORMULAE, ABSCISSAE, AND WEIGHT COEFFICIENTS." In Numerical Methods in Electromagnetism. Elsevier, 2000. http://dx.doi.org/10.1016/b978-012615760-4/50018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Asymptotic formulas for the generalized associated Legendre functions in a neighborhood of singular points." In Generalized Associated Legendre Functions and Their Applications. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811783_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tickodri-Togboa, Sandy S. "On the Links Between the Potential Energy Due to a Unit-Point Charge, the Generating Function and Rodrigue’s Formula for Legendre’s Polynomials." In Proceedings from the International Conference on Advances in Engineering and Technology. Elsevier, 2006. http://dx.doi.org/10.1016/b978-008045312-5/50061-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Legendre's formula"

1

Rajković, P. M., V. S. Kiryakova, Michail D. Todorov, and Christo I. Christov. "Legendre-type Special Functions Defined by Fractional Order Rodrigues Formula." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: Proceedings of the 2nd International Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3526666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Makaryan, Vahagn, Michael Sutton, Tatevik Yeghiazaryan, Davresh Hasanyan, and Xiaomin Deng. "Cracked Elastic Layer Under a Compressive Mechanical Load." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11967.

Full text
Abstract:
In the present work, the problem of an elastic layer weakened by a finite penny shaped crack parallel to a layer’s surface that is loaded in compression is considered. Assuming that the surfaces of the crack have frictional slipping contact, Henkel and Legendre integral transformation techniques are employed to formulate solutions in the form of an infinite system of linear algebraic equations. The regularity of the equations is established and closed-form solutions are obtained for stresses and strains. Assuming shear stress on the crack surfaces is linearly distributed, numerical results sho
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!