Academic literature on the topic 'Legume, symbiosis, nitrogen fixation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Legume, symbiosis, nitrogen fixation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Legume, symbiosis, nitrogen fixation"

1

Zahran, Hamdi Hussein. "Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate." Microbiology and Molecular Biology Reviews 63, no. 4 (1999): 968–89. http://dx.doi.org/10.1128/mmbr.63.4.968-989.1999.

Full text
Abstract:
SUMMARY Biological N2 fixation represents the major source of N input in agricultural soils including those in arid regions. The major N2-fixing systems are the symbiotic systems, which can play a significant role in improving the fertility and productivity of low-N soils. The Rhizobium-legume symbioses have received most attention and have been examined extensively. The behavior of some N2-fixing systems under severe environmental conditions such as salt stress, drought stress, acidity, alkalinity, nutrient deficiency, fertilizers, heavy metals, and pesticides is reviewed. These major stress factors suppress the growth and symbiotic characteristics of most rhizobia; however, several strains, distributed among various species of rhizobia, are tolerant to stress effects. Some strains of rhizobia form effective (N2-fixing) symbioses with their host legumes under salt, heat, and acid stresses, and can sometimes do so under the effect of heavy metals. Reclamation and improvement of the fertility of arid lands by application of organic (manure and sewage sludge) and inorganic (synthetic) fertilizers are expensive and can be a source of pollution. The Rhizobium-legume (herb or tree) symbiosis is suggested to be the ideal solution to the improvement of soil fertility and the rehabilitation of arid lands and is an important direction for future research.
APA, Harvard, Vancouver, ISO, and other styles
2

Schulte, Carolin C. M., Khushboo Borah, Rachel M. Wheatley, et al. "Metabolic control of nitrogen fixation in rhizobium-legume symbioses." Science Advances 7, no. 31 (2021): eabh2433. http://dx.doi.org/10.1126/sciadv.abh2433.

Full text
Abstract:
Rhizobia induce nodule formation on legume roots and differentiate into bacteroids, which catabolize plant-derived dicarboxylates to reduce atmospheric N2 into ammonia. Despite the agricultural importance of this symbiosis, the mechanisms that govern carbon and nitrogen allocation in bacteroids and promote ammonia secretion to the plant are largely unknown. Using a metabolic model derived from genome-scale datasets, we show that carbon polymer synthesis and alanine secretion by bacteroids facilitate redox balance in microaerobic nodules. Catabolism of dicarboxylates induces not only a higher oxygen demand but also a higher NADH/NAD+ ratio than sugars. Modeling and 13C metabolic flux analysis indicate that oxygen limitation restricts the decarboxylating arm of the tricarboxylic acid cycle, which limits ammonia assimilation into glutamate. By tightly controlling oxygen supply and providing dicarboxylates as the energy and electron source donors for N2 fixation, legumes promote ammonia secretion by bacteroids. This is a defining feature of rhizobium-legume symbioses.
APA, Harvard, Vancouver, ISO, and other styles
3

Geddes, Barney A., Jason V. S. Kearsley, Jiarui Huang, et al. "Minimal gene set from Sinorhizobium (Ensifer) meliloti pSymA required for efficient symbiosis with Medicago." Proceedings of the National Academy of Sciences 118, no. 2 (2020): e2018015118. http://dx.doi.org/10.1073/pnas.2018015118.

Full text
Abstract:
Reduction of N2 gas to ammonia in legume root nodules is a key component of sustainable agricultural systems. Root nodules are the result of a symbiosis between leguminous plants and bacteria called rhizobia. Both symbiotic partners play active roles in establishing successful symbiosis and nitrogen fixation: while root nodule development is mostly controlled by the plant, the rhizobia induce nodule formation, invade, and perform N2 fixation once inside the plant cells. Many bacterial genes involved in the rhizobia–legume symbiosis are known, and there is much interest in engineering the symbiosis to include major nonlegume crops such as corn, wheat, and rice. We sought to identify and combine a minimal bacterial gene complement necessary and sufficient for symbiosis. We analyzed a model rhizobium, Sinorhizobium (Ensifer) meliloti, using a background strain in which the 1.35-Mb symbiotic megaplasmid pSymA was removed. Three regions representing 162 kb of pSymA were sufficient to recover a complete N2-fixing symbiosis with alfalfa, and a targeted assembly of this gene complement achieved high levels of symbiotic N2 fixation. The resulting gene set contained just 58 of 1,290 pSymA protein-coding genes. To generate a platform for future synthetic manipulation, the minimal symbiotic genes were reorganized into three discrete nod, nif, and fix modules. These constructs will facilitate directed studies toward expanding the symbiosis to other plant partners. They also enable forward-type approaches to identifying genetic components that may not be essential for symbiosis, but which modulate the rhizobium’s competitiveness for nodulation and the effectiveness of particular rhizobia–plant symbioses.
APA, Harvard, Vancouver, ISO, and other styles
4

Pandharikar, Gaurav, Jean-Luc Gatti, Jean-Christophe Simon, Pierre Frendo, and Marylène Poirié. "Aphid infestation differently affects the defences of nitrate-fed and nitrogen-fixing Medicago truncatula and alters symbiotic nitrogen fixation." Proceedings of the Royal Society B: Biological Sciences 287, no. 1934 (2020): 20201493. http://dx.doi.org/10.1098/rspb.2020.1493.

Full text
Abstract:
Legumes can meet their nitrogen requirements through root nodule symbiosis, which could also trigger plant systemic resistance against pests. The pea aphid Acyrthosiphon pisum , a legume pest, can harbour different facultative symbionts (FS) influencing various traits of their hosts. It is therefore worth determining if and how the symbionts of the plant and the aphid modulate their interaction. We used different pea aphid lines without FS or with a single one ( Hamiltonella defensa , Regiella insecticola, Serratia symbiotica ) to infest Medicago truncatula plants inoculated with Sinorhizobium meliloti (symbiotic nitrogen fixation, SNF) or supplemented with nitrate (non-inoculated, NI). The growth of SNF and NI plants was reduced by aphid infestation, while aphid weight (but not survival) was lowered on SNF compared to NI plants. Aphids strongly affected the plant nitrogen fixation depending on their symbiotic status, suggesting indirect relationships between aphid- and plant-associated microbes. Finally, all aphid lines triggered expression of Pathogenesis-Related Protein 1 ( PR1 ) and Proteinase Inhibitor (PI) , respective markers for salicylic and jasmonic pathways, in SNF plants, compared to only PR1 in NI plants. We demonstrate that the plant symbiotic status influences plant–aphid interactions while that of the aphid can modulate the amplitude of the plant's defence response.
APA, Harvard, Vancouver, ISO, and other styles
5

Oono, Ryoko, Carolyn G. Anderson, and R. Ford Denison. "Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates." Proceedings of the Royal Society B: Biological Sciences 278, no. 1718 (2011): 2698–703. http://dx.doi.org/10.1098/rspb.2010.2193.

Full text
Abstract:
The legume–rhizobia symbiosis is a classical mutualism where fixed carbon and nitrogen are exchanged between the species. Nonetheless, the plant carbon that fuels nitrogen (N 2 ) fixation could be diverted to rhizobial reproduction by ‘cheaters’—rhizobial strains that fix less N 2 but potentially gain the benefit of fixation by other rhizobia. Host sanctions can decrease the relative fitness of less-beneficial reproductive bacteroids and prevent cheaters from breaking down the mutualism. However, in certain legume species, only undifferentiated rhizobia reproduce, while only terminally differentiated rhizobial bacteroids fix nitrogen. Sanctions were, therefore, tested in two legume species that host non-reproductive bacteroids. We demonstrate that even legume species that host non-reproductive bacteroids, specifically pea and alfalfa, can severely sanction undifferentiated rhizobia when bacteroids within the same nodule fail to fix N 2 . Hence, host sanctions by a diverse set of legumes play a role in maintaining N 2 fixation.
APA, Harvard, Vancouver, ISO, and other styles
6

Prévost, Danielle, Pascal Drouin, Serge Laberge, Annick Bertrand, Jean Cloutier, and Gabriel Lévesque. "Cold-adapted rhizobia for nitrogen fixation in temperate regions." Canadian Journal of Botany 81, no. 12 (2003): 1153–61. http://dx.doi.org/10.1139/b03-113.

Full text
Abstract:
Rhizobia from Canadian soils were selected for cold adaptation with the aim of improving productivity of legumes that are subjected to cool temperatures during the growing season. One approach was to use rhizobia associated with legume species indigenous to arctic and subarctic regions: (i) Mesorhizobium sp. isolated from Astragalus and Oxytropis spp. and (ii) Rhizobium leguminosarum from Lathryrus spp. The majority of these rhizobia are considered psychrotrophs because they can grow at 0 °C. The advantages of cold adaptation of arctic Mesorhizobium to improve legume symbiosis were demonstrated with the temperate forage legume sainfoin (Onobrychis viciifolia). In laboratory and field studies, arctic rhizobia were more efficient than temperate (commercial) rhizobia in improving growth of sainfoin and were more competitive in forming nodules. Biochemical studies on cold adaptation showed higher synthesis of cold shock proteins in cold-adapted than in nonadapted arctic rhizobia. Since arctic Mesorhizobium cannot nodulate agronomically important legumes, the nodulation genes and the bacterial signals (Nod factors) were characterized as a first step to modifying the host specificity of nodulation. Another valuable approach was to screen for cold adaptation, that is, rhizobia naturally associated with agronomic legumes cultivated in temperate areas. A superior strain of Sinorhizobium meliloti adapted for nodulation of alfalfa at low temperatures was selected and was the most efficient for improving growth of alfalfa in laboratory and field studies. This strain also performed well in improving regrowth of alfalfa after overwintering under cold and anaerobic (ice encasement) stresses, indicating a possible cross-adaptation of selected rhizobia for various abiotic stresses inherent to temperate climates.Key words: cold adaptation, legumes, symbiotic efficiency, cold shock protein, nodulation genes, anaerobiosis.
APA, Harvard, Vancouver, ISO, and other styles
7

Rivas, Raul, Encarna Velázquez, Anne Willems, et al. "A New Species of Devosia That Forms a Unique Nitrogen-Fixing Root-Nodule Symbiosis with the Aquatic Legume Neptunia natans (L.f.) Druce." Applied and Environmental Microbiology 68, no. 11 (2002): 5217–22. http://dx.doi.org/10.1128/aem.68.11.5217-5222.2002.

Full text
Abstract:
ABSTRACT Rhizobia are the common bacterial symbionts that form nitrogen-fixing root nodules in legumes. However, recently other bacteria have been shown to nodulate and fix nitrogen symbiotically with these plants. Neptunia natans is an aquatic legume indigenous to tropical and subtropical regions and in African soils is nodulated by Allorhizobium undicola. This legume develops an unusual root-nodule symbiosis on floating stems in aquatic environments through a unique infection process. Here, we analyzed the low-molecular-weight RNA and 16S ribosomal DNA (rDNA) sequence of the same fast-growing isolates from India that were previously used to define the developmental morphology of the unique infection process in this symbiosis with N. natans and found that they are phylogenetically located in the genus Devosia, not Allorhizobium or Rhizobium. The 16S rDNA sequences of these two Neptunia-nodulating Devosia strains differ from the only species currently described in that genus, Devosia riboflavina. From the same isolated colonies, we also located their nodD and nifH genes involved in nodulation and nitrogen fixation on a plasmid of approximately 170 kb. Sequence analysis showed that their nodD and nifH genes are most closely related to nodD and nifH of Rhizobium tropici, suggesting that this newly described Neptunia-nodulating Devosia species may have acquired these symbiotic genes by horizontal transfer.
APA, Harvard, Vancouver, ISO, and other styles
8

Atkins, C. A. "The Legume/Rhizobium Symbiosis: Limitations to Maximizing Nitrogen Fixation." Outlook on Agriculture 15, no. 3 (1986): 128–34. http://dx.doi.org/10.1177/003072708601500305.

Full text
Abstract:
Although the recent fall in the price of oil will ultimately be reflected in some reduction in the price of nitrogenous fertilizers the cost of the latter will still be sufficient to maintain interest in techniques of biological nitrogen fixation. This is attractive, in the sense that it involves direct utilization of atmospheric nitrogen as a free good but there are some costs, not yet possible to evaluate, to be set on the debit side. There is, therefore, need for much more research.
APA, Harvard, Vancouver, ISO, and other styles
9

Drew, E. A., V. V. S. R. Gupta, and D. K. Roget. "Herbicide use, productivity, and nitrogen fixation in field pea (Pisum sativum)." Australian Journal of Agricultural Research 58, no. 12 (2007): 1204. http://dx.doi.org/10.1071/ar06394.

Full text
Abstract:
Grain legumes grown in low-rainfall (<300 mm per annum) cropping regions of southern Australia have at times failed to provide the rotational benefits observed in other regions, such as improved cereal yields in the season following a legume. ‘In-crop’ herbicides were identified as one possible factor that may have been negatively affecting the legume–rhizobia symbiosis. To test this hypothesis and identify possible mechanisms behind any observed effects, field trials were conducted at Waikerie (South Australia) in 2001, 2003, and 2004. Field pea (Pisum sativum L.) was grown and treated with one of several herbicides 5 weeks after sowing. Crop yellowing, biomass, nodulation, and nitrogen (N2) fixation were assessed 3 weeks after spraying, and biomass, yield, percent nitrogen derived from fixation (%Ndfa), and N2 fixation (2003, 2004) were assessed at the end of the season. Some herbicides stunted plant growth and caused crop yellowing 3 weeks after application; however, none of the herbicides affected N nutrition of peas. Despite this, in 2003, half of the herbicides assessed reduced the %Ndfa by 34–60% relative to unsprayed control plots. Herbicide effects on the measured parameters followed similar trends over each year of the 3-year study. However, effects were rarely significant in 2004 as the trials were primarily affected by low rainfall, indicating that environmental parameters play a key role in determining the severity of herbicide effects on symbiotic N2 fixation. The possible mechanisms behind herbicide-induced damage to the pea–rhizobium symbiosis are discussed, including reduced photosynthetic capacity of plants exposed to herbicides.
APA, Harvard, Vancouver, ISO, and other styles
10

Vance, C. P., and J. F. S. Lamb. "Application of biochemical studies to improving nitrogen fixation." Australian Journal of Experimental Agriculture 41, no. 3 (2001): 403. http://dx.doi.org/10.1071/ea00007.

Full text
Abstract:
Improvement of symbiotic nitrogen fixation requires a multidisciplinary approach with a comprehensive program ranging from microbial ecology to plant breeding and genomics. Achievement of symbiotic nitrogen fixation requires at least 100 genes from each partner interacting in a favorable environment. The more information that we obtain from applied and fundamental studies of Rhizobium–legume and Frankia–non-legume symbioses, the greater are our chances to extend nitrogen fixation to non-fixing species. Studies with alfalfa (Medicago sativa L.) aimed at improving symbiotic nitrogen fixation have resulted in significant advances in germplasm development, plant biochemistry, microbial ecology and the understanding of plant genes involved in nodule nitrogen and carbon metabolism. However, translation to field improvement of symbiotic nitrogen fixation has proven elusive.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Legume, symbiosis, nitrogen fixation"

1

Webster, Gordon. "The interaction between rhizobia and the non-legume Parasponia andersonii." Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ng, Ying-sim. "Symbiotic nitrogen fixation by native woody legumes (leguminosae) in Hong Kong, China." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B41897122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ng, Ying-sim, and 吳英嬋. "Symbiotic nitrogen fixation by native woody legumes (leguminosae) in Hong Kong, China." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B41897122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ott, Thomas. "Functional genomics of nodulins in the model legume Lotus japonicus." Phd thesis, [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975678981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miloud, Youssra. "Etude du potentiel bénéfique des souches de Rhizobium pour Medicago truncatula : symbiose, solubilisation du phosphate et lutte contre la verticilliose." Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0123/document.

Full text
Abstract:
En raison de leur capacité à former une symbiose avec des bactéries du sol appelées Rhizobium, ces bactéries fixent l’azote atmosphérique et leurs plantes-hôtes n’ont donc pas besoin de fertilisant azoté, les légumineuses jouent un rôle important dans l'agriculture. En outre, certaines souches de Rhizobium ont la capacité de solubiliser le phosphate, fournissant ainsi du phosphore assimilable aux plantes hôtes. Une aptitude à lutter contre certains agents pathogènes a aussi été démontrée dans plusieurs études. La présente étude évalue l’efficacité symbiotique de rhizobiums tunisiens, leur capacité à solubiliser le phosphate, et leur aptitude à lutter contre la verticilliose ainsi que d’autres champignons pathogènes chez Medicago truncatula. Trente-six isolats de rhizobiums prélevés sur des nodules racinaires de M. truncatula provenant de différentes régions de Tunisie ont été obtenus pour ce travail. Environ 60% de ces isolats étaient capables de solubiliser le phosphate in vitro. Dans une seconde étape, trois rhizobiums solubilisant le phosphate et un isolat incapable de solubiliser le phosphate in vitro ont été utilisés pour des essais en phytotron afin de voir l’effet de la présence des rhizobiums sur les paramètres de croissance des plantes en présence de phosphate inorganique sous forme de CaHPO4 et rocheux sous forme brute. Les résultats de l’essai montrent que les plantes de la lignée A17 traitées au CaHPO4, ont tendance à produire plus de nodules et de biomasse aérienne que la lignée F83005.5 et que la forme du phosphate utilisé, soluble ou non soluble, affecte les paramètres étudiés. L'inoculation de quatre lignées de M. truncatula avec 16 isolats de rhizobium sélectionnés auparavant a montré une interaction significative entre les isolats et les lignées pour la symbiose visible par la formation de nodules. Tous les isolats de rhizobium testés ont augmenté la biomasse aérienne des plantes, réduit la biomasse racinaire et entraîné une teneur plus élevée en azote mais l’effet dépendait de l’isolat de rhizobium et de la lignée de M. truncatula utilisés. Enfin, ces isolats ont été testés pour leur capacité à protéger des plantes de M. truncatula contre une maladie racinaire, la verticilliose. Des activités antagonistes in vitro contre divers champignons pathogènes dont Verticillium et Fusarium ont également été recherchées permettant d’identifier un isolat efficace pour la lutte biologique. Les résultats de cette étude suggèrent que des isolats de rhizobium sélectionnés pourraient être utilisés comme biofertilisants dans les sols pauvres pour réduire l'utilisation d'engrais chimiques azotés et phosphorés mais pas pour lutter contre la verticilliose<br>Because of their ability to form a symbiosis with soil bacteria called Rhizobium, legumes play an important role in agriculture. These bacteria fix atmospheric nitrogen; hence their host plants do not need nitrogen fertilizers. In addition, some strains of Rhizobium have the ability to solubilize phosphate, thus providing phosphorus to host plants. An ability to control certain pathogens has also been demonstrated in several studies. The present study evaluates the symbiotic efficiency of Tunisian rhizobia, their ability to solubilize phosphate, and their ability to control Verticillium wilt and other pathogenic fungi in Medicago truncatula. Thirty-six rhizobial isolates were obtained from root nodules of M. truncatula from different parts of Tunisia were used in this work. About 60% of these isolates were able to solubilize phosphate in vitro. In a second step, three phosphate solubilizing rhizobia and one isolate unable to solubilize phosphate in vitro were used for phytotron assays to see the effect of the presence of rhizobia on plant growth parameters in the presence of soluble and insoluble forms of phosphate. The results of the experiment show that A17 plants treated with CaHPO4, tend to produce more nodules and shoot biomass than F83005.5 and that the phosphate form used, soluble or non-soluble, affects parameters studied. Inoculation of four M. truncatula lines with 16 previously selected rhizobial isolates showed significant interaction between isolates and lines for symbiotic abilities as visualised by nodule formation. All rhizobial isolates tested increased above-ground biomass, reduced root biomass, and increased nitrogen content with strains effects of plant genotype and bacterial isolate. Finallly, these isolates were tested for their ability to protect M. truncatula plants against Verticillium wilt, and to inhibit the growth of pathogenic fungi such as Verticillium and Fusarium in vitro. However, no isolate could be identified as effective for biological control. The results of this study suggest that selected rhizobial isolates could be used as biofertilizers in poor soils to reduce the use of nitrogen and phosphorus fertilizers but not to control Verticillium wilt
APA, Harvard, Vancouver, ISO, and other styles
6

Kleinert, Aleysia. "The functional responses of phosphate-deficient lupin nodules as mediated by phosphoenolpyruvate carboxylase and altered carbon and nitrogen metabolism." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5184.

Full text
Abstract:
Thesis (PhD (Plant biotechnology))--University of Stellenbosch, 2010.<br>ENGLISH ABSTRACT: In soils, the concentration of available phosphate (P) for plants is normally very low (ca. 1 µM in the soil solution), because most of the P combines with iron, aluminium and calcium to form relatively insoluble compounds. Inorganic P (Pi)-deficiency is thought to be one of the limiting factors of nitrogen fixation due to the high energy requirement for nitrogenase function of plants taking part in nitrogen fixation. Pideficiency has important implications for the metabolic Pi and adenylate pools of plants, which influence respiration and nitrogen fixation. An alternative route of pyruvate supply during Pi stress has been proposed involving the combined activities of phosphoenolpyruvate carboxylase (PEPc), malate dehydrogenase (MDH) and NAD-malic enzyme (ME) supplying pyruvate to the mitochondrion during Pi stress. Previously, three isoforms of PEPc were isolated from lupin nodules and roots, with two forms being nodule specific. The aim of this project was to determine the effect of Pi stress on these PEPc isoforms in Lupinus luteus at transcript and protein expression level with a view to produce genetically modified crops for nutrient-poor soils. Cytosolic P levels were measured over a time course to give an indication of temporal development of P stress in nodules. The changes in enzyme activities of PEPc, MDH and PK (pyruvate kinase) under P stress were measured and the downstream effect on amino and organic acid pools were analysed. Two novel PEPc isoforms, LUP1 (AM235211) and LUP2 (AM237200) were isolated from nodules, followed by transcriptional and protein expression analyses. Nodules under P stress had lower amounts of metabolically available Pi and as P stressed developed, the amount of Pi decreased. This decline in Pi levels was associated with lower growth, but higher biological nitrogen fixation (BNF). A greater proportion of root-nodule respiration was devoted to nutrient acquisition than to new growth. A typical P-stress response is higher anaplerotic carbon fixation via PEPc. However, in this study, no significant differences were found for PEPc, MDH or PK in P-stressed plants compared to P-sufficient plants which would lead to an increase in organic acids. An increase in key amino acids was reported along with unchanged levels of organic acids. These levels of organic and amino acid are in congruence with the increases in BNF under P-starvation. No significant differences were found in expression of PEPC1 or PEPC2 at 12 and 20 days for both P-sufficient and P-stressed plants which further supported the lack of engagement of the PEPc-MDH-ME bypass. PEPc activity appeared not to be regulated by gene expression or phosphorylation indicating that other posttranslational modifications such as a decrease in protein degradation may be of importance.<br>AFRIKAANSE OPSOMMING: Die konsentrasie van fosfaat (P) beskikbaar vir opname deur plante vanuit die grond is gewoonlik baie laag (in die omgewing van 1 µM) aangesien die P onoplosbare komplekse vorm met katione soos yster, aluminium en kalsium. ‘n Tekort aan anorganiese P (Pi) word gereken as een van die beperkende faktore van stikstofbinding as gevolg van die hoë energie behoefte wat nitrogenase plaas op plante wat van gefikseerde stikstof gebruik maak. Hierdie P-tekort het ook belangrike betrekking op die metaboliese fosfaat- en adenilaatpoele wat weer op hul beurt respirasie en stikstofbinding beÏnvloed. ‘n Alternatiewe roete van pirovaatvoorsiening aan mitochondria tydens fosfaatstres is voorgestel wat bestaan uit die aktiwiteite van fosfoenolpirovaat karboksilase (PEPc), malaat dehidrogenase en NAD-malaat ensiem. Vantevore is drie isovorme van PEPc uit Lupinus luteus wortelknoppies en wortels geïsoleer, met twee van die isovorme wat wortelknoppie-spesifiek was. The doel van hierdie projek was om die invloed van P-tekort op die transkripsie en proteien uitdrukkingsvlak van hierdie PEPc isovorme te bepaal met die doel van gemodifiseerde gewasse vir arm gronde ingedagte. Sitoplasmiese P konsentrasies is gemeet oor tyd om ‘n aanduiding te gee van die ontwikkeling van P-tekort oor tyd. Veranderinge in ensiemaktiwiteite van PEPc, MDH en pirovaatkinase (PK) is gemeet gedurende P-tekort as ook die moontlike effek van hierdie ensiemaktiwiteite op aminosuur en organiese suur poele. Twee nuwe PEPc isovorme, LUP1 (AM235211) en LUP2 (AM237200) is uit wortelknoppies geïsoleer en gekarakteriseer. Transkripsie en proteïenuitdrukking is geanaliseer. Wortelknoppies wat P-tekort behandeling ontvang het, het laer vlakke van metabolise beskikbare Pi gehad en soos die P-tekort ontwikkel het oor tyd, het die Pi vlakke gedaal. Hierdie afname in vlakke van Pi was geassosieer met laer groei, maar met ‘n toename in biologiese stikstofbinding. ‘n Groter proporsie van respirasie is toegestaan aan minerale opname as aan nuwe groei. ‘n Tipiese reaksie op P-tekort is hoër anaplerotiese koolstofbinding via PEPc. Alhoewel, in hierdie studie is geen gevind betekenisvolle verandering gevind in die aktiwiteite van PEPc, MDH en PK nie in plante wat P-tekort ervaar het nie. Verhoogde aktiwiteit van hierdie ensieme sou verhoogde organise suur konsentrasies tot gevolg hê. ‘n Toename in aminosuur konsentrasies is gevind tesame met onveranderde vlakke van organiese sure. Hierdie toename in aminosure word onderskryf deur die verhoogde biologiese stikstofbinding tydens P-tekort. Geen betekenisvolle verskille is gevind in die geenuitdrukking van pepc1 en pepc2 by beide 12 en 20 dae van P-tekort nie, wat verder die afwesigheid van die PEPc- MDH-ME alternatiewe roete beaam het. Dit blyk dat PEPc aktiwiteit nie deur geenuitdrukking of proteïenfosforilering beheer word nie, maar eerder dat ander posttranslasie modifikasies soos ‘n verlaagde afbraak van proteïen ‘n rol speel.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Shengbin. "The roles of the NOOT-BOP-COCH-LIKE genes in plant development and in the symbiotic organ identity." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASB005.

Full text
Abstract:
Les gènes NODULE-ROOT de Medicago truncatula, BLADE-ON-PETIOLE d’Arabidopsis thaliana et COCHLEATA de Pisum sativum font partie d'un clade spécifique NOOT-BOP-COCH-LIKE1 (NBCL1) hautement conservé et qui appartient à la famille de gènes NON-EXPRESSOR OF PATHOGENESIS RELATED PROTEIN1 LIKE. Chez les légumineuses, les membres du clade NBCL1 sont connus comme les principaux régulateurs de l'identité des organes symbiotiques (nodules). Les membres du clade NBCL2 (MtNOOT2) jouent également un rôle clé dans l'établissement et le maintien de l'identité de l’organe symbiotique, en redondance avec les gènes NBCL1. Il a également été démontré que ces gènes végétaux NBCL sont impliqués dans l'abscission. Les gènes NBCL sont également conservés chez les plantes monocotylédones chez lesquelles ils contrôlent différents aspects du développement. Ce travail de thèse vise à mieux comprendre les rôles des gènes NBCL1 et NBCL2 dans le développement des plantes légumineuses et chez Brachypodium et à découvrir de nouveaux acteurs moléculaires impliqués dans la régulation de l'identité des nodules dépendante de NBCL1, en utilisant de nouveaux mutants d'insertion TILLING et Tnt1 chez deux espèces de légumineuses (Medicago et Pisum). En outre, nous avons utilisé les mutations KO CRISPR chez Brachypodium pour mieux comprendre leur rôle chez les plantes monocotylédones. Ce travail de thèse a permis d'élucider les nouvelles fonctions des gènes NBCL1 dans le développement des tiges et l'architecture des plantes. Nous avons également révélé que les membres du clade NBCL2, spécifique aux légumineuses, fonctionnent de manière redondante avec le clade NBCL1 et jouent des rôles importants dans le développement des feuilles, des stipules, des inflorescences et des fleurs. De plus, nous avons montré un rôle dans le développement, l'établissement et le maintien de l'identité des nodosités, et par conséquent dans le succès et l'efficacité de l'association symbiotique. Dans cette thèse, nous avons également exploré les rôles des gènes NBCL BdUNICULME4 et BdLAXATUM-A, dans le développement de B. distachyon à l'aide de doubles mutants. Nous avons confirmé les résultats précédents et révélé une nouvelle fonction pour ces deux gènes dans l'architecture des plantes, la formation des ligules et des inflorescences, ainsi que dans la teneur en lignine. Ce travail de thèse a finalement permis l'identification et la caractérisation de nouveaux mutants pour les gènes de M. truncatula ALOG (Arabidopsis LSH1 et Oryza G1). Les protéines ALOG sont des partenaires d'interaction potentiels pour les NBCLs. Nous avons montré que certains membres ALOG jouent un rôle important dans le développement des nodules et des organes aériens. Dans l'ensemble, ce travail de thèse suggère qu'au cours de l'évolution, le programme de développement des nodules a été recruté à partir de programmes de régulation préexistants pour le développement et l'identité des nodosités<br>The Medicago truncatula NODULE-ROOT, the Arabidopsis thaliana BLADE-ON-PETIOLE, and the Pisum sativum COCHLEATA genes are members of a highly conserved NOOT-BOP-COCH-LIKE1 (NBCL1) specific clade that belongs to the NON-EXPRESSOR OF PATHOGENESIS RELATED PROTEIN1 LIKE gene family. In legumes, the members of this NBCL1 clade are known as key regulators of the symbiotic organ identity. The members of the NBCL2 clade (MtNOOT2) also play a key role in the establishment and maintenance of the symbiotic nodule identity, redundantly with NBCL1 while without significant phenotype alone. These NBCL plant genes were also shown to be involved in abscission. In addition, NBCL genes are also conserved in monocotyledon plants in which they also control different aspects of development. The present thesis work aims to better understand the roles of the NBCL1 and NBCL2 genes in development in both legume and Brachypodium plants and to discover new molecular actors involved in the NBCL1-dependent regulation of the nodule identity using novel TILLING and Tnt1 insertional mutants in two legume species, Medicago, and Pisum. In addition we used CRISPR knock-out mutations in Brachypodium to better understand their roles in monocotyledon plants. This thesis work unraveled new functions of the NBCL1 genes in plant shoot development and plant architecture. We also revealed that the members of the legume-specific NBCL2 redundantly function with NBCL1 sub-clade and play important roles in leaf, stipule, inflorescence and flower development. In addition we showed a role in nodule development, identity establishment and maintenance, and consequently in the success and efficiency of the symbiotic association. In this thesis, we also explored the roles of the highly conserved NBCL genes, BdUNICULME4 and BdLAXATUM-A, in the development of B. distachyon using double mutants. We confirmed previous results and reveal a new function for these two genes in plant architecture, ligule and inflorescence formation, and also lignin content. This thesis work has finally allowed the identification and the characterization of new mutants for M. truncatula ALOG (Arabidopsis LSH1 and Oryza G1) genes. ALOG proteins are potential interacting partners for NBCL. We showed that some ALOG members play important roles in nodule and aerial organ development. Altogether, this thesis work suggests that during evolution, the nodule developmental program was recruited from pre-existing regulatory programs for nodule development and identity
APA, Harvard, Vancouver, ISO, and other styles
8

Costa, Carlos Germano Ferreira. "CaracterizaÃÃo fenotÃpica de rizÃbios de solo rizosfÃrico de leguminosas nativas do semi-Ãrido cearense." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6932.

Full text
Abstract:
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico<br>Os diferentes solos e manejos culturais afetam o equilÃbrio entre solo e organismos endÃgenos, os quais, por sua vez afetam a sustentabilidade do solo. Desse modo acredita-se que a diversidade dos organismos do solo tenha uma relaÃÃo estreita com a diversidade de outros organismos, tanto na superfÃcie, quanto no prÃprio solo e que as interaÃÃes dessa diversidade microbiana possam levar a uma alteraÃÃo de funÃÃo reduzindo ou ampliando a sustentabilidade dos ecossistemas. InteraÃÃes mutualÃsticas sÃo muito comuns na natureza e desempenham importante papel em muitos processos de diversos ecossistemas. Desse modo, a identificaÃÃo dos padrÃes da estrutura espacial e abundÃncia de microrganismos à um elemento importante e, necessÃrio para identificar esse processo.AssociaÃÃes mutualÃsticas entre plantas e organismos do solo sÃo essenciais para a sobrevivÃncia e crescimento das plantas na maioria dos ecossistemas terrestres. Assim, o uso combinado de leguminosas e microrganismos na reabilitaÃÃo de solos deteriorados à um processo efetivo na reestabilizaÃÃo dos ciclos de nutrientes nesse sistema, pois a estrutura alimentar do solo pode afetar o desenvolvimento da vegetaÃÃo. O mutualismo entre rizÃbios e leguminosas à possÃvel de manipulaÃÃo experimental. Diferente de alguns mutualistas, rizÃbios podem crescer e ser cultivados em meios seletivos. AlÃm disso, seu comportamento mutualista dentro dos nÃdulos pode ser manipulado e monitorado de modo nÃo invasivo. objetivo deste trabalho foi avaliar a diversidade de estirpes nativas de rizÃbio e a relaÃÃo com algumas espÃcies de leguminosas arbÃreas nativas ocorrentes na Reserva Particular do PatrimÃnio Natural (RPPN) Serra das Almas (05 00â a 05 20â S e 40 48 a 41 12â W) no estado do Cearà (Brasil),em uma Ãrea de caatinga no municÃpio de CrateÃs-Ce, dista 390 Km de Fortaleza, entre cotas de 300 a 350 m de altitude, e que caracteriza-se pro apresentar clima semi Ãrido e pluviosidade mÃdia de 881 mm anuais distribuÃda de Janeiro a Abril. Foram identificadas oito espÃcies de leguminosas arbÃreas, que apresentaramassociaÃÃes com rizÃbios: Anadenanthera colubrina var. cebil (Griseb)Altschu (Angico), Bauhinia cheilantha (Bong.) Stend (MororÃ), Poincianella pyramidalis (Tul.) L.P. Queiroz (Catingueira), Erythrina velutina Willd. (Mulungu), Mimosa caesalpiniifolia Benth (SabiÃ), Minosa acustistipula (Mart.) Benth (Juremabranca), Mimosa tenuiflora (Willd.) Poir (Jurema-preta), Amburana Cearensis (AllemÃo) A.C. Smith (Emburana). Foram coletados nÃdulos e solo rizosfÃrico para a identificaÃÃo de bactÃrias diazotrÃficas, em dois perÃodos, na estaÃÃo chuvosa e na seca. Foi realizado o cultivo destes rizÃbios nas plantas-isca, Macropitillium atropurpureum (DC) Urban, Vigna unguiculata (L., Walp.), Cajanus cajan var. flavus DC e Mimosa pudica L, bem como a caracterizaÃÃo cultural caracterizaÃÃo cultural de estirpes de rizÃbio isolados, testes de tolerÃncia a nÃveis crescentes de NaCl e a altas temperaturas.Verificou-se que 92,42% dos isolados apresentara crescimento rÃpido e 52,24% acidificaram o meio 79. Um total de 84,93% isolados possuem tolerÃncia a altas temperaturas (45 C), e 90,75% isolados apresentaram tolerÃncia Ãs concentraÃÃes salinas a 5%.Os resultados obtidos demonstraram que hà relaÃÃo entre a tolerÃncia à salinidade e à temperatura quando avaliado in vitro para os isolados testados
APA, Harvard, Vancouver, ISO, and other styles
9

Metcalf, Sarah Jean. "Symbiotic nitrogen fixation and establishment of six Montana native legumes species." Thesis, Montana State University, 2005. http://etd.lib.montana.edu/etd/2005/metcalf/MetcalfS0805.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yates, Ronald John. "Symbiotic interactions of geographically diverse annual and perennial Trifolium spp. with Rhizobium leguminosarum bv. trifolii /." Murdoch University Digital Theses Program, 2008. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20100330.93305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Legume, symbiosis, nitrogen fixation"

1

Hansen, Alexander P. Symbiotic Nb2s fixation of crop legumes: Achievements and perspectives. Margraf, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Novikova, T. I. Strukturno-funkt︠s︡ionalʹnye osobennosti bobovo-rizobialʹnogo simbioza. Akademicheskoe izd-vo "Geo", 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Novikova, T. I. Strukturno-funkt︠s︡ionalʹnye osobennosti bobovo-rizobialʹnogo simbioza. Akademicheskoe izd-vo "Geo", 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hardarson, G., T. A. Lie, and A. Houwers, eds. Breeding Legumes for Enhanced Symbiotic Nitrogen Fixation. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5077-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sulieman, Saad, and Lam-Son Phan Tran, eds. Legume Nitrogen Fixation in a Changing Environment. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06212-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Legume nodulation: A global perspective. Wiley-Blackwell, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sulieman, Saad, and Lam-Son Phan Tran, eds. Legume Nitrogen Fixation in Soils with Low Phosphorus Availability. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55729-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Somasegaran, P. Methods in legume-rhizobium technology. University of Hawaii NifTAL Project and MIRCEN, Dept. of Agronomy and Soil Science, Hawaii Institute of Tropical Agriculture and Human Resources, College of Tropical Agriculture and Human Resources, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Workshop on Managing Legume Nitrogen Fixation in the Cropping Systems of Asia (1996 ICRISAT Asia Center). Extending nitrogen fixation research to farmers' fields: Proceedings of an International Workshop on Managing Legume Nitrogen Fixation in the Cropping Systems of Asia , 20-24 Aug. 1996, ICRISAT Asia Center, India. International Crops Research Institute for the Semi-Arid Tropics, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Technical handbook on symbiotic nitrogen fixation: Legume/Rhizobium. Food and Agriculture Organization of the United Nations, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Legume, symbiosis, nitrogen fixation"

1

Dazzo, Frank, Rawle Hollingsworth, Saleela Philip-Hollingsworth, et al. "Recent studies on the Rhizobium-legume symbiosis." In Nitrogen Fixation. Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-6432-0_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Evans, H. J., P. J. Bottomley, and W. E. Newton. "Genetic Improvement of Legume-Rhizobium Symbiosis." In Nitrogen fixation research progress. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5175-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sprent, Janet I. "Evolution and diversity in the legume-rhizobium symbiosis: chaos theory?" In Symbiotic Nitrogen Fixation. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1088-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Valdés-López, Oswaldo, and Michael R. Sussman. "Leveraging Large-Scale Approaches to Dissect the Rhizobia-Legume Symbiosis." In Biological Nitrogen Fixation. John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119053095.ch79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kahn, M. L., M. Mortimer, K. S. Park, and W. Zhang. "Carbon Metabolism in the Rhizobium- Legume Symbiosis." In Nitrogen Fixation: Fundamentals and Applications. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0379-4_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Minchin, Frank R., John E. Sheehy, and John F. Witty. "Factors Limiting N2 Fixation by the Legume-Rhizobium Symbiosis." In Nitrogen fixation research progress. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5175-4_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stacey, Gary. "Control of Nodulation in Legume Symbiosis." In Nitrogen Fixation: From Molecules to Crop Productivity. Springer Netherlands, 2000. http://dx.doi.org/10.1007/0-306-47615-0_110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Downie, J. A., and A. Kondorosi. "Interactions in the Rhizobium-Legume Symbiosis." In Biological Nitrogen Fixation for the 21st Century. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5159-7_91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kahn, Michael L., Jennifer Kraus, and John E. Somerville. "A Model of Nutrient Exchange in the Rhizobium-Legume Symbiosis." In Nitrogen fixation research progress. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5175-4_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Werner, Dietrich, Heike Neumann, Petra Scheidemann, Anne Bode-Kirchhoff, and Astrid Wetzel. "Bioassays for Soil Contamination Using the Legume Root Nodule Symbiosis." In Highlights of Nitrogen Fixation Research. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4795-2_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Legume, symbiosis, nitrogen fixation"

1

Arildsen, Kate. "Characterization of Defective Symbiotic Nitrogen Fixation and Superdulation Mutants in the Model Legume Plant Medicago truncatula." In ASPB PLANT BIOLOGY 2020. ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Poulin, Marissa. "Phetypic characterization of Tnt1 mutants defective in symbiotic nitrogen fixation in the model legume plant Medicago truncatula." In ASPB PLANT BIOLOGY 2020. ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1061456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsyganov, V. E. "Symbiotic nodule development." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.257.

Full text
Abstract:
The interaction of legumes with rhizobia leads to formation of the symbiotic nodules on their roots, which are specialized plant organs for nitrogen fixation. Considerable progress has been made in deciphering the molecular-genetic and cellular mechanisms of symbiotic nodule development in recent years. However, some aspects of nodule development clearly merit much more attention.
APA, Harvard, Vancouver, ISO, and other styles
4

Belimov, A. A., A. I. Shaposhnikov, D. S. Syrova, et al. "Response of plants and nitrogen-fixing symbiosis to the toxicity of cadmium and mercury using the pea mutant SGECdt." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.039.

Full text
Abstract:
The combined effect of Hg and Cd on the growth, elemental composition, root exudation and interactions with rhizobia of pea SGE and its mutant SGECdt was studied in hydroponics and sand. The tolerance mechanisms of legume-rhizobia symbiosis to heavy metals are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Klimenko, O. P., O. A. Kulaeva, O. Y. Shtark, A. I. Zhernakov, I. A. Tikhonovich, and V. A. Zhukov. "Genetic characterization of pea (Pisum sativum L.) mutants P59 and P60, defective in nitrogen fixation." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.122.

Full text
Abstract:
Several genes involved in development of symbiosis between pea and rhizobia haven’t yet been characterized in detail. Here, the first results of genetic analysis of pea mutants in the symbiotic genes Sym23 and Sym24 are presented.
APA, Harvard, Vancouver, ISO, and other styles
6

Guro, P., V. Safronova, A. Sazanova, et al. "Rhizobial microsymbionts of the narrowly endemic Oxytropis species growing in Kamchatka possess a set of genes that are associated with T3SS and T6SS secretion systems and can affect the development of symbiosis." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.099.

Full text
Abstract:
A collection of rhizobial strains isolated from root nodules of the narrowly endemic legume species Oxytropis erecta, O. anadyrensis, O. kamtschatica and O. pumilio growing on the Kamchatka Peninsula (Russian Federation) was obtained. Analysis of the 16S rRNA gene sequence showed a significant diversity of isolates belonging to the families Rhizobiaceae (Rhizobium), Phyllobacteriaceae (Mesorhizobium, Phyllobacterium) and Bradyrhizobiaceae (Bosea, Tardiphaga). Pairs of taxonomically different strains in various combinations were isolated from some nodules of Oxytropis plants. Plant nodulation assays showed that only strains belonging to the genus Mesorhizobium (M. jarvisii, M. loti and M. huakuii) could form nitrogen-fixing nodules. The nitrogen-fixing activity of the strains was more associated with the host plant than with the species of strains. The whole genome sequences analysis showed that the strains M. loti 582 and M. huakuii 583 possessed symbiotic genes necessary for the formation of effective symbiosis and grouped into Sym-clusters. In contrast, the strain T. robiniae 581 had only a reduced number of fix genes, while the strains Phyllobacterium sp. 628 and R. lusitanum 629 possesed only individual symbiotic genes, which obviously did not participate in the formation of nodules. It was also stated that the strains M. loti 582 and M. huakuii 583 had a significantly larger set of genes related to the secretion systems T3SS and T6SS that can affect the host specificity of strains, compared with 6 commercial strains used as reference. These two strains formed nodules of two types (typical elongated and atypical rounded) on Oxytropis plants. We suggest that a possible cause of the observed phenomenon is the availability of different nodulation strategies in these strains (dependent and independent of Nod-factors). &#x0D; Thus, as a result of studying the collection of strains isolated from the narrow endemic species of Kamchatka Oxytropis, interesting objects were selected to study the functions of the T3SS and T6SS genes, and their role in the development of rhizobia-legume symbiosis. The prospects of using strains with gene systems for both symbiotic and non-symbiotic nodulation to enhance the efficiency of plant-microbe interactions by expanding the host specificity and increasing the efficiency of nodulation are discussed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography