Academic literature on the topic 'Lemme de Schwartz'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lemme de Schwartz.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lemme de Schwartz"
Boivin, Daniel. "Théorèmes de Convergence Locale Pour Les Résolvantes et Les Processus Abéliens à Plusieurs Paramètres." Canadian Journal of Mathematics 39, no. 5 (October 1, 1987): 1147–61. http://dx.doi.org/10.4153/cjm-1987-058-2.
Full textZhu, Jian-Feng. "Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings." Filomat 32, no. 15 (2018): 5385–402. http://dx.doi.org/10.2298/fil1815385z.
Full textYamashita, Shinji. "Sur le Lemme de Schwarz." Canadian Mathematical Bulletin 28, no. 2 (June 1, 1985): 233–36. http://dx.doi.org/10.4153/cmb-1985-028-4.
Full textHuang, Ziyan, Di Zhao, and Hongyi Li. "A boundary Schwarz lemma for pluriharmonic mappings between the unit polydiscs of any dimensions." Filomat 34, no. 9 (2020): 3151–60. http://dx.doi.org/10.2298/fil2009151h.
Full textMateljevic, Miodrag, and Marek Svetlik. "Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings." Applicable Analysis and Discrete Mathematics 14, no. 1 (2020): 150–68. http://dx.doi.org/10.2298/aadm200104001m.
Full textGramain, François. "Lemme de Schwarz pour des produits cartésiens." Annales mathématiques Blaise Pascal 8, no. 2 (2001): 67–75. http://dx.doi.org/10.5802/ambp.142.
Full textBesson, Gérard, Gilles Courtois, and Sylvestre Gallot. "Lemme de Schwarz réel et applications géométriques." Acta Mathematica 183, no. 2 (1999): 145–69. http://dx.doi.org/10.1007/bf02392826.
Full textPal, Sourav, and Samriddho Roy. "A generalized Schwarz lemma for two domains related to μ-synthesis." Complex Manifolds 5, no. 1 (February 2, 2018): 1–8. http://dx.doi.org/10.1515/coma-2018-0001.
Full textEdigarian, Armen, and Włodzimierz Zwonek. "Schwarz lemma for the tetrablock." Bulletin of the London Mathematical Society 41, no. 3 (March 22, 2009): 506–14. http://dx.doi.org/10.1112/blms/bdp022.
Full textRatto, Andrea, Marco Rigoli, and Laurent Veron. "extensions of the Schwarz Lemma." Duke Mathematical Journal 74, no. 1 (April 1994): 223–36. http://dx.doi.org/10.1215/s0012-7094-94-07411-5.
Full textDissertations / Theses on the topic "Lemme de Schwartz"
Rivard, Patrice. "Un lemme de Schwartz-Pick à points multiples." Master's thesis, Université Laval, 2007. http://hdl.handle.net/20.500.11794/19410.
Full textKhémira, Samy. "Approximants de Hermite-Padé, déterminants d'interpolation et approximation diophantienne." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00009653.
Full textRivard, Patrice. "Un lemme de Schwarz-Pick à points multiples." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24845/24845.pdf.
Full textSchwartz, Stefanie [Verfasser], and Karsten [Akademischer Betreuer] Lemmer. "Sicherheitsschichten im Eisenbahnsystem / Stefanie Schwartz ; Betreuer: Karsten Lemmer." Braunschweig : Technische Universität Braunschweig, 2012. http://d-nb.info/1175823066/34.
Full textNokrane, Abdelkrim. "Le lemme de Schwarz pour les multifonctions analytiques finies et applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0001/NQ43100.pdf.
Full textTerenzi, Gloria. "Lemma di Schwarz e la sua interpretazione geometrica." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13543/.
Full textImechrane, Meriem. "Applications harmoniques : singularités apparentes, lemme de Schwarz-Yau et grand théorème de Picard." Corté, 2012. http://www.theses.fr/2012CORT0027.
Full textThe first aim of this work is to provide ʺrealʺ proofs of the Big Picard Theorem and of a related theorem of Myung Kwack. By ʺreal" we mean : without using complex analysis, especially that part relying on the Cauchy Theorem. This program is easily carried out with the help of a theorem of J. Sacks and K. Uhlenbeck and a huge generalization of the Schwarz-Pick Lemma of classical function theory, namely the Schwarz-Yau Lemma. The main result so acheved is the following real version of Kwack’s theorem. (. . . /. . . )
Bacca, Salvatore. "Il lemma di Schwarz e la distanza di Kobayashi." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13823/.
Full textBarros, Jéssica Laís Calado de. "O teorema da aplicação de Riemann: uma prova livre de integração." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-13122017-161946/.
Full textIn this work, following the Weierstrass\'s approach, we aim to answer the following question: knowing the equivalence between holomorphy and analyticity in the complex case, which properties of analytic functions can be obtained without assuming such equivalence? Through analyzing this situation, interesting results will be obtained without employing of any complex integration theorem and in order to achieve this goal, our main tools will be the theory of unordered sums in C and properties of winding numbers of closed paths. Among the proven results are the well known Fundamental Theorem of Algebra, Schwarz\'s Lemma, Montel\'s Theorem, Weierstrass\'s Double Series Theorem, Argument Principle, Rouché\'s Theorem, Weierstrass\'s Factorization Theorem, Picard\'s Little Theorem and the Riemann\'s Mapping Theorem.
Rivard, Patrice. "Un lemme de Schwartz-Pick à points multiples /." 2007. http://www.theses.ulaval.ca/2007/24845/24845.pdf.
Full textBooks on the topic "Lemme de Schwartz"
Kim, Kang-Tae. Schwarz's lemma from a differential geometric viewpoint. Singapore: World Scientific, 2011.
Find full textBook chapters on the topic "Lemme de Schwartz"
Kodaira, Kunihiko. "Schwarz–Kobayashi Lemma." In SpringerBriefs in Mathematics, 19–38. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6787-7_2.
Full textKobayashi, Shoshichi. "Schwarz Lemma and Negative Curvature." In Grundlehren der mathematischen Wissenschaften, 19–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03582-5_2.
Full textElin, Mark, Fiana Jacobzon, Marina Levenshtein, and David Shoikhet. "The Schwarz Lemma: Rigidity and Dynamics." In Harmonic and Complex Analysis and its Applications, 135–230. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01806-5_3.
Full textGamelin, Theodore W. "The Schwarz Lemma and Hyperbolic Geometry." In Undergraduate Texts in Mathematics, 260–73. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-0-387-21607-2_9.
Full textMoriya, Katsuhiro. "The Schwarz Lemma for Super-Conformal Maps." In Hermitian–Grassmannian Submanifolds, 59–68. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5556-0_6.
Full textBurgeth, Bernhard. "Schwarz Lemma Type Inequalities for Harmonic Functions in the Ball." In Classical and Modern Potential Theory and Applications, 133–47. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1138-6_13.
Full textMuller, Marie-Paule. "Gromov’s Schwarz lemma as an estimate of the gradient for holomorphic curves." In Holomorphic Curves in Symplectic Geometry, 217–31. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8508-9_8.
Full textYuan, Xinyi, Shou-Wu Zhang, and Wei Zhang. "Assumptions on the Schwartz Function." In The Gross-Zagier Formula on Shimura Curves. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691155913.003.0005.
Full text"Distance and the Schwarz Lemma." In Hyperbolic Manifolds and Holomorphic Mappings, 37–43. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812775054_0003.
Full text"Consequences of the Schwarz Lemma." In Function Theory in the Unit Ball of ℂn, 161–84. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-3-540-68276-9_8.
Full textConference papers on the topic "Lemme de Schwartz"
ALIYEV AZEROĞLU, T., and BÜLENT N. ÖRNEK. "A GENERALIZED SCHWARTZ LEMMA AT THE BOUNDARY." In Proceedings of the Conference Satellite to ICM 2006. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812778833_0009.
Full textAkyel, Tuğba, and Bülent Nafi Örnek. "On the rigidity part of Schwarz Lemma." In THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136123.
Full text