Journal articles on the topic 'Lemme de Schwartz'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lemme de Schwartz.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Boivin, Daniel. "Théorèmes de Convergence Locale Pour Les Résolvantes et Les Processus Abéliens à Plusieurs Paramètres." Canadian Journal of Mathematics 39, no. 5 (October 1, 1987): 1147–61. http://dx.doi.org/10.4153/cjm-1987-058-2.
Full textZhu, Jian-Feng. "Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings." Filomat 32, no. 15 (2018): 5385–402. http://dx.doi.org/10.2298/fil1815385z.
Full textYamashita, Shinji. "Sur le Lemme de Schwarz." Canadian Mathematical Bulletin 28, no. 2 (June 1, 1985): 233–36. http://dx.doi.org/10.4153/cmb-1985-028-4.
Full textHuang, Ziyan, Di Zhao, and Hongyi Li. "A boundary Schwarz lemma for pluriharmonic mappings between the unit polydiscs of any dimensions." Filomat 34, no. 9 (2020): 3151–60. http://dx.doi.org/10.2298/fil2009151h.
Full textMateljevic, Miodrag, and Marek Svetlik. "Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings." Applicable Analysis and Discrete Mathematics 14, no. 1 (2020): 150–68. http://dx.doi.org/10.2298/aadm200104001m.
Full textGramain, François. "Lemme de Schwarz pour des produits cartésiens." Annales mathématiques Blaise Pascal 8, no. 2 (2001): 67–75. http://dx.doi.org/10.5802/ambp.142.
Full textBesson, Gérard, Gilles Courtois, and Sylvestre Gallot. "Lemme de Schwarz réel et applications géométriques." Acta Mathematica 183, no. 2 (1999): 145–69. http://dx.doi.org/10.1007/bf02392826.
Full textPal, Sourav, and Samriddho Roy. "A generalized Schwarz lemma for two domains related to μ-synthesis." Complex Manifolds 5, no. 1 (February 2, 2018): 1–8. http://dx.doi.org/10.1515/coma-2018-0001.
Full textEdigarian, Armen, and Włodzimierz Zwonek. "Schwarz lemma for the tetrablock." Bulletin of the London Mathematical Society 41, no. 3 (March 22, 2009): 506–14. http://dx.doi.org/10.1112/blms/bdp022.
Full textRatto, Andrea, Marco Rigoli, and Laurent Veron. "extensions of the Schwarz Lemma." Duke Mathematical Journal 74, no. 1 (April 1994): 223–36. http://dx.doi.org/10.1215/s0012-7094-94-07411-5.
Full textYang, Yan, and Tao Qian. "Schwarz lemma in Euclidean spaces." Complex Variables and Elliptic Equations 51, no. 7 (July 2006): 653–59. http://dx.doi.org/10.1080/17476930600688623.
Full textXu, Zhenghua. "Schwarz lemma for pluriharmonic functions." Indagationes Mathematicae 27, no. 4 (September 2016): 923–29. http://dx.doi.org/10.1016/j.indag.2016.06.002.
Full textKALAJ, DAVID. "SCHWARZ LEMMA FOR HOLOMORPHIC MAPPINGS IN THE UNIT BALL." Glasgow Mathematical Journal 60, no. 1 (September 4, 2017): 219–24. http://dx.doi.org/10.1017/s0017089517000052.
Full textHamada, Hidetaka. "A Schwarz lemma on complex ellipsoids." Annales Polonici Mathematici 67, no. 3 (1997): 269–75. http://dx.doi.org/10.4064/ap-67-3-269-275.
Full textZhang, Zhongxiang. "The Schwarz lemma in Clifford analysis." Proceedings of the American Mathematical Society 142, no. 4 (January 6, 2014): 1237–48. http://dx.doi.org/10.1090/s0002-9939-2014-11854-5.
Full textBeardon, A. F. "The Schwarz-Pick Lemma for derivatives." Proceedings of the American Mathematical Society 125, no. 11 (1997): 3255–56. http://dx.doi.org/10.1090/s0002-9939-97-03906-3.
Full textÖrnek, Nafi, and Burcu Gök. "Boundary Schwarz lemma for holomorphic functions." Filomat 31, no. 18 (2017): 5553–65. http://dx.doi.org/10.2298/fil1718553o.
Full textKrantz, Steven G. "The Schwarz lemma at the boundary." Complex Variables and Elliptic Equations 56, no. 5 (May 2011): 455–68. http://dx.doi.org/10.1080/17476931003728438.
Full textMercer, Peter R. "Sharpened Versions of the Schwarz Lemma." Journal of Mathematical Analysis and Applications 205, no. 2 (January 1997): 508–11. http://dx.doi.org/10.1006/jmaa.1997.5217.
Full textKnese, Greg. "A Schwarz lemma on the polydisk." Proceedings of the American Mathematical Society 135, no. 09 (March 30, 2007): 2759–69. http://dx.doi.org/10.1090/s0002-9939-07-08766-7.
Full textKlimek, M. "Infinitesimal pseudometrics and the Schwarz lemma." Proceedings of the American Mathematical Society 105, no. 1 (January 1, 1989): 134. http://dx.doi.org/10.1090/s0002-9939-1989-0930248-4.
Full textIto, Manabu. "Schwarz Lemma in infinite-dimensional spaces." Monatshefte für Mathematik 191, no. 4 (January 29, 2020): 735–48. http://dx.doi.org/10.1007/s00605-020-01375-x.
Full textDineen, Seán, and Richard M. Timoney. "Extremal mappings for the Schwarz lemma." Arkiv för Matematik 30, no. 1-2 (December 1992): 61–81. http://dx.doi.org/10.1007/bf02384862.
Full textMackey, M., and P. Mellon. "A Schwarz Lemma and Composition Operators." Integral Equations and Operator Theory 48, no. 4 (April 1, 2004): 511–24. http://dx.doi.org/10.1007/s00020-003-1240-1.
Full textBeardon, A. F., and D. Minda. "A multi-point Schwarz-Pick Lemma." Journal d'Analyse Mathématique 92, no. 1 (December 2004): 81–104. http://dx.doi.org/10.1007/bf02787757.
Full textLiu, Bingyuan. "Two applications of the Schwarz lemma." Pacific Journal of Mathematics 296, no. 1 (May 1, 2018): 141–53. http://dx.doi.org/10.2140/pjm.2018.296.141.
Full textCharpentier, S., and L. Deleaval. "On a vector-valued Hopf–Dunford–Schwartz lemma." Positivity 17, no. 3 (October 27, 2012): 899–910. http://dx.doi.org/10.1007/s11117-012-0211-7.
Full textVigué, Jean-Pierre. "Un lemme de Schwarz pour les boules-unités ouvertes." Canadian Mathematical Bulletin 40, no. 1 (March 1, 1997): 117–28. http://dx.doi.org/10.4153/cmb-1997-014-4.
Full textMOHAPATRA, MANAS RANJAN, XIANTAO WANG, and JIAN-FENG ZHU. "BOUNDARY SCHWARZ LEMMA FOR SOLUTIONS TO NONHOMOGENEOUS BIHARMONIC EQUATIONS." Bulletin of the Australian Mathematical Society 100, no. 3 (September 9, 2019): 470–78. http://dx.doi.org/10.1017/s0004972719000947.
Full textKwon, Ern, Jinkee Lee, Gun Kwon, and Mi Kim. "A Refinement of Schwarz–Pick Lemma for Higher Derivatives." Mathematics 7, no. 1 (January 13, 2019): 77. http://dx.doi.org/10.3390/math7010077.
Full textMishra, Akshaya Kumar. "Some applications of Schwarz Lemma for operators." International Journal of Mathematics and Mathematical Sciences 12, no. 2 (1989): 349–53. http://dx.doi.org/10.1155/s0161171289000402.
Full textAkyel, Tugba, and Bulent Nafi Ornek. "Applications of the Jack's lemma for the meromorphic functions at the boundary." Boletim da Sociedade Paranaense de Matemática 38, no. 7 (October 14, 2019): 219–26. http://dx.doi.org/10.5269/bspm.v38i7.46633.
Full textBernal-González, L., and M. C. Calderón-Moreno. "Two hyperbolic Schwarz lemmas." Bulletin of the Australian Mathematical Society 66, no. 1 (August 2002): 17–24. http://dx.doi.org/10.1017/s0004972700020633.
Full textMercer, Peter R. "An improved Schwarz Lemma at the boundary." Open Mathematics 16, no. 1 (October 19, 2018): 1140–44. http://dx.doi.org/10.1515/math-2018-0096.
Full textHuang, Ziyan, Di Zhao, and Hongyi Li. "Boundary Schwarz lemma and rigidity property for holomorphic mappings of the unit polydisc in Cn." Filomat 34, no. 9 (2020): 2813–18. http://dx.doi.org/10.2298/fil2009813h.
Full textVerma, K. "A Schwarz lemma for correspondences and applications." Publicacions Matemàtiques 47 (July 1, 2003): 373–87. http://dx.doi.org/10.5565/publmat_47203_04.
Full textJeong, Moon-Ja. "THE SCHWARZ LEMMA AND BOUNDARY FIXED POINTS." Pure and Applied Mathematics 18, no. 3 (August 31, 2011): 275–84. http://dx.doi.org/10.7468/jksmeb.2011.18.3.275.
Full textAKYEL, TUGBA, and NAFI ORNEK. "A SHARP SCHWARZ LEMMA AT THE BOUNDARY." Pure and Applied Mathematics 22, no. 3 (August 31, 2015): 263–73. http://dx.doi.org/10.7468/jksmeb.2015.22.3.263.
Full textKlimek, M. "Infinitesimal Pseudo-Metrics and the Schwarz Lemma." Proceedings of the American Mathematical Society 105, no. 1 (January 1989): 134. http://dx.doi.org/10.2307/2046747.
Full textCheung, Leung-Fu, and Pui-Fai Leung. "A Schwarz lemma for complete Riemannian manifolds." Bulletin of the Australian Mathematical Society 55, no. 3 (June 1997): 513–15. http://dx.doi.org/10.1017/s000497270003416x.
Full textMercer, Peter R. "Boundary Schwarz inequalities arising from Rogosinski's lemma." Journal of Classical Analysis, no. 2 (2018): 93–97. http://dx.doi.org/10.7153/jca-2018-12-08.
Full textAgler, J., and N. J. Young. "A Schwarz Lemma for the Symmetrized Bidisc." Bulletin of the London Mathematical Society 33, no. 2 (March 2001): 175–86. http://dx.doi.org/10.1112/blms/33.2.175.
Full textBeardon, Alan F., and Kenneth Stephenson. "The Schwarz-Pick Lemma for circle packings." Illinois Journal of Mathematics 35, no. 4 (December 1991): 577–606. http://dx.doi.org/10.1215/ijm/1255987673.
Full textChelst, Dov. "A generalized Schwarz lemma at the boundary." Proceedings of the American Mathematical Society 129, no. 11 (June 6, 2001): 3275–78. http://dx.doi.org/10.1090/s0002-9939-01-06144-5.
Full textKalaj, David, and Matti Vuorinen. "On harmonic functions and the Schwarz lemma." Proceedings of the American Mathematical Society 140, no. 1 (May 2, 2011): 161–65. http://dx.doi.org/10.1090/s0002-9939-2011-10914-6.
Full textCho, Kyung Hyun, Seong-A. Kim, and Toshiyuki Sugawa. "On a Multi-Point Schwarz-Pick Lemma." Computational Methods and Function Theory 12, no. 2 (August 21, 2012): 483–99. http://dx.doi.org/10.1007/bf03321839.
Full textSavas-Halilaj, Andreas. "A Schwarz–Pick lemma for minimal maps." Annals of Global Analysis and Geometry 56, no. 2 (May 16, 2019): 193–201. http://dx.doi.org/10.1007/s10455-019-09663-y.
Full textMazet, Pierre. "Principe du Maximum et Lemme de Schwarz a Valeurs Vectorielles." Canadian Mathematical Bulletin 40, no. 3 (September 1, 1997): 356–63. http://dx.doi.org/10.4153/cmb-1997-042-9.
Full textMomani, Shaher, and Samir Hadid. "Lyapunov stability solutions of fractional integrodifferential equations." International Journal of Mathematics and Mathematical Sciences 2004, no. 47 (2004): 2503–7. http://dx.doi.org/10.1155/s0161171204312366.
Full textJoseph, James E., and Myung H. Kwack. "A Generalization of the Schwarz Lemma to Normal Selfaps of Complex Spaces." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 68, no. 1 (February 2000): 10–18. http://dx.doi.org/10.1017/s1446788700001543.
Full text