Journal articles on the topic 'Length spectrum'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Length spectrum.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
PONG, WAI YAN. "LENGTH SPECTRA OF NATURAL NUMBERS." International Journal of Number Theory 05, no. 06 (2009): 1089–102. http://dx.doi.org/10.1142/s1793042109002584.
Full textStoyanov, Luchezar. "On the scattering length spectrum." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, no. 11 (1997): 1169–74. http://dx.doi.org/10.1016/s0764-4442(97)83548-3.
Full textBiswas, Debabrata. "Length spectrum of chaotic billiards." Physical Review Letters 71, no. 17 (1993): 2714–17. http://dx.doi.org/10.1103/physrevlett.71.2714.
Full textSormani, Christina. "Convergence and the length spectrum." Advances in Mathematics 213, no. 1 (2007): 405–39. http://dx.doi.org/10.1016/j.aim.2007.01.001.
Full textKhanevsky, Michael. "Hofer's length spectrum of symplectic surfaces." Journal of Modern Dynamics 9, no. 01 (2015): 219–35. http://dx.doi.org/10.3934/jmd.2015.9.219.
Full textSchenck, Emmanuel. "Exponential gaps in the length spectrum." Journal of Modern Dynamics 16 (2020): 207–23. http://dx.doi.org/10.3934/jmd.2020007.
Full textCanary, Richard D., and Christopher J. Leininger. "Kleinian groups with discrete length spectrum." Bulletin of the London Mathematical Society 39, no. 2 (2007): 189–93. http://dx.doi.org/10.1112/blms/bdl005.
Full textNozari, K., and P. Pedram. "Minimal length and bouncing-particle spectrum." EPL (Europhysics Letters) 92, no. 5 (2010): 50013. http://dx.doi.org/10.1209/0295-5075/92/50013.
Full textPopov, Georgi S. "Length spectrum invariants of Riemannian manifolds." Mathematische Zeitschrift 213, no. 1 (1993): 311–51. http://dx.doi.org/10.1007/bf03025724.
Full textStoyanov, L. "Rigidity of the scattering length spectrum." Mathematische Annalen 324, no. 4 (2002): 743–71. http://dx.doi.org/10.1007/s00208-002-0358-9.
Full textBERLINKOV, ARTEMI, and BORIS SOLOMYAK. "Singular substitutions of constant length." Ergodic Theory and Dynamical Systems 39, no. 9 (2018): 2384–402. http://dx.doi.org/10.1017/etds.2017.133.
Full textGuillarmou and Lefeuvre. "The marked length spectrum of Anosov manifolds." Annals of Mathematics 190, no. 1 (2019): 321. http://dx.doi.org/10.4007/annals.2019.190.1.6.
Full textDolgopyat, Dmitry, and Dmitry Jakobson. "On small gaps in the length spectrum." Journal of Modern Dynamics 10, no. 02 (2016): 339–52. http://dx.doi.org/10.3934/jmd.2016.10.339.
Full textTurner, M. S., and M. E. Cates. "The relaxation spectrum of polymer length distributions." Journal de Physique 51, no. 4 (1990): 307–16. http://dx.doi.org/10.1051/jphys:01990005104030700.
Full textBendjoudi, Ahmida, and Noureddine Mebarki. "The quantum tetrahedron and the length spectrum." International Journal of Modern Physics D 26, no. 06 (2016): 1750044. http://dx.doi.org/10.1142/s0218271817500444.
Full textŠarić, Dragomir. "Earthquakes in the length-spectrum Teichmüller spaces." Proceedings of the American Mathematical Society 143, no. 4 (2014): 1531–43. http://dx.doi.org/10.1090/s0002-9939-2014-12242-8.
Full textKapovich, Ilya. "Random length-spectrum rigidity for free groups." Proceedings of the American Mathematical Society 140, no. 5 (2012): 1549–60. http://dx.doi.org/10.1090/s0002-9939-2011-11030-x.
Full textGrácio, Clara, and J. Sousa Ramos. "Geodesic length spectrum on compact Riemann surfaces." Journal of Geometry and Physics 60, no. 11 (2010): 1643–55. http://dx.doi.org/10.1016/j.geomphys.2010.06.006.
Full textHu, Jun, and Francisco G. Jimenez-Lopez. "Length spectrum characterization of asymptotic Teichmüller space." Monatshefte für Mathematik 186, no. 1 (2018): 73–91. http://dx.doi.org/10.1007/s00605-018-1176-9.
Full textSchaller, Paul Schmutz. "The modular torus has maximal length spectrum." Geometric and Functional Analysis 6, no. 6 (1996): 1057–73. http://dx.doi.org/10.1007/bf02246996.
Full textBonahon, Francis. "Surfaces with the same marked length spectrum." Topology and its Applications 50, no. 1 (1993): 55–62. http://dx.doi.org/10.1016/0166-8641(93)90072-l.
Full textGornet, Ruth, and Maura B. Mast. "Length minimizing geodesics and the length spectrum of Riemannian two-step nilmanifolds." Journal of Geometric Analysis 13, no. 1 (2003): 107–43. http://dx.doi.org/10.1007/bf02931000.
Full textPopov, Georgi. "Invariants of the length spectrum and spectral invariants of planar convex domains." Communications in Mathematical Physics 161, no. 2 (1994): 335–64. http://dx.doi.org/10.1007/bf02099782.
Full textJwo, Dah-Jing, I.-Hua Wu, and Yi Chang. "Windowing Design and Performance Assessment for Mitigation of Spectrum Leakage." E3S Web of Conferences 94 (2019): 03001. http://dx.doi.org/10.1051/e3sconf/20199403001.
Full textBuffett, G. G., C. A. Hurich, E. A. Vsemirnova, et al. "Stochastic heterogeneity mapping around a Mediterranean salt lens." Ocean Science Discussions 7, no. 1 (2010): 1–15. http://dx.doi.org/10.5194/osd-7-1-2010.
Full textTaylor, Michael. "Scattering Length and the Spectrum of –Δ + V". Canadian Mathematical Bulletin 49, № 1 (2006): 144–51. http://dx.doi.org/10.4153/cmb-2006-015-5.
Full textGušić, Dž. "On generalized length spectrum in quotients of SL4." Journal of Physics: Conference Series 1564 (June 2020): 012023. http://dx.doi.org/10.1088/1742-6596/1564/1/012023.
Full textAkhoury, R., and Y. P. Yao. "Minimal length uncertainty relation and the hydrogen spectrum." Physics Letters B 572, no. 1-2 (2003): 37–42. http://dx.doi.org/10.1016/j.physletb.2003.07.084.
Full textAbramson, Arthur S., and Nianqi Reo. "Distinctive vowel length: duration vs. spectrum in Thai." Journal of Phonetics 18, no. 2 (1990): 79–92. http://dx.doi.org/10.1016/s0095-4470(19)30395-x.
Full textGallopoulos, A., C. Heegard, and P. H. Siegel. "The power spectrum of run-length-limited codes." IEEE Transactions on Communications 37, no. 9 (1989): 906–17. http://dx.doi.org/10.1109/26.35370.
Full textGORNET, R., and M. MAST. "The length spectrum of Riemannian two-step nilmanifolds1." Annales Scientifiques de l’École Normale Supérieure 33, no. 2 (2000): 181–209. http://dx.doi.org/10.1016/s0012-9593(00)00111-7.
Full textMeyerhoff, G. "The ortho-length spectrum for hyperbolic 3-manifolds." Quarterly Journal of Mathematics 47, no. 187 (1996): 349–59. http://dx.doi.org/10.1093/qjmath/47.187.349.
Full textSormani, Christina, and Guofang Wei. "The covering spectrum of a compact length space." Journal of Differential Geometry 67, no. 1 (2004): 35–77. http://dx.doi.org/10.4310/jdg/1099587729.
Full textMEYERHOFF, G. ROBERT. "THE ORTHO-LENGTH SPECTRUM FOR HYPERBOLIC 3-MANIFOLDS." Quarterly Journal of Mathematics 47, no. 3 (1996): 349–59. http://dx.doi.org/10.1093/qmath/47.3.349.
Full textHassani, Hossein, Rahim Mahmoudvand, and Mohammad Zokaei. "Separability and window length in singular spectrum analysis." Comptes Rendus Mathematique 349, no. 17-18 (2011): 987–90. http://dx.doi.org/10.1016/j.crma.2011.07.012.
Full textWang, Rui, Hong-Guang Ma, Guo-Qing Liu, and Dong-Guang Zuo. "Selection of window length for singular spectrum analysis." Journal of the Franklin Institute 352, no. 4 (2015): 1541–60. http://dx.doi.org/10.1016/j.jfranklin.2015.01.011.
Full textSharp, Richard. "Degeneracy in the length spectrum for metric graphs." Geometriae Dedicata 149, no. 1 (2010): 177–88. http://dx.doi.org/10.1007/s10711-010-9475-x.
Full textMaungchang, Rasimate. "The Sunada construction and the simple length spectrum." Geometriae Dedicata 163, no. 1 (2012): 349–60. http://dx.doi.org/10.1007/s10711-012-9753-x.
Full textBiswas, Debabrata. "Universality in the length spectrum of integrable systems." Pramana 42, no. 6 (1994): 447–53. http://dx.doi.org/10.1007/bf02847126.
Full textGornet, Ruth. "The marked length spectrum vs. the Laplace spectrum on forms on Riemannian nilmanifolds." Commentarii Mathematici Helvetici 71, no. 1 (1996): 297–329. http://dx.doi.org/10.1007/bf02566421.
Full textLiu, Shen, Fu Ping Wang, and Xiu Cheng Liu. "UM2000 Spectrum Estimation Using Multiple Signal Classification Method." Advanced Materials Research 734-737 (August 2013): 2622–29. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.2622.
Full textKume, Kenji, and Naoko Nose-Togawa. "Additive Decomposition of Power Spectrum Density in Singular Spectrum Analysis." Advances in Data Science and Adaptive Analysis 08, no. 01 (2016): 1650003. http://dx.doi.org/10.1142/s2424922x16500030.
Full textSu, Bo Ni, Hong Xie, and Xi Yao Hua. "The Simulation Research of Classic Spectrum Estimation Periodogram Method Based on Matlab." Advanced Materials Research 926-930 (May 2014): 2857–60. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.2857.
Full textTokovyy, Yu V. "Cosserat Spectrum of an Axisymmetric Elasticity Problem for a Finite-Length Solid Cylinder." Journal of Mechanics 35, no. 3 (2018): 343–49. http://dx.doi.org/10.1017/jmech.2018.6.
Full textCONSTANTINE, DAVID, and JEAN-FRANÇOIS LAFONT. "Marked length rigidity for Fuchsian buildings." Ergodic Theory and Dynamical Systems 39, no. 12 (2018): 3262–91. http://dx.doi.org/10.1017/etds.2018.12.
Full textAnantharaman, Nalini, Maxime Ingremeau, Mostafa Sabri, and Brian Winn. "Absolutely Continuous Spectrum for Quantum Trees." Communications in Mathematical Physics 383, no. 1 (2021): 537–94. http://dx.doi.org/10.1007/s00220-021-03994-3.
Full textThomas Barthelmé. "On deformations of the spectrum of a Finsler-Laplacian that preserve the length spectrum." Bulletin de la Société mathématique de France 145, no. 3 (2017): 421–48. http://dx.doi.org/10.24033/bsmf.2743.
Full textJudge, R. H., D. C. Moule, A. Biernacki, M. Benkel, J. M. Ross, and J. Rustenburg. "Laser excitation spectrum and the long path length absorption spectrum of formyl cyanide, CHOCN." Journal of Molecular Spectroscopy 116, no. 2 (1986): 364–70. http://dx.doi.org/10.1016/0022-2852(86)90133-5.
Full textSONG, H., U. C. PAEK, and D. Y. KIM. "WALK-OFF LENGTH LIMITED SPECTRAL BROADENING IN SUPERCONTINUUM GENERATION." Journal of Nonlinear Optical Physics & Materials 18, no. 01 (2009): 99–110. http://dx.doi.org/10.1142/s0218863509004464.
Full textFotiy, O., M. Ostrovskii, and M. Popov. "Isomorphic spectrum and isomorphic length of a Banach space." Carpathian Mathematical Publications 12, no. 1 (2020): 88–93. http://dx.doi.org/10.15330/cmp.12.1.88-93.
Full text