Contents
Academic literature on the topic 'Lerch's theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lerch's theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lerch's theorem"
Dolník, Matej, and Tomáš Kisela. "Lerch’s theorem on nabla time scales." Mathematica Slovaca 69, no. 5 (2019): 1127–36. http://dx.doi.org/10.1515/ms-2017-0295.
Full textWANG, LI-YUAN, and HAI-LIANG WU. "APPLICATIONS OF LERCH’S THEOREM TO PERMUTATIONS OF QUADRATIC RESIDUES." Bulletin of the Australian Mathematical Society 100, no. 3 (2019): 362–71. http://dx.doi.org/10.1017/s000497271900073x.
Full textBarnes, K. J. "Avoiding the theorem of Lerche and Shore." Physics Letters B 468, no. 1-2 (1999): 81–85. http://dx.doi.org/10.1016/s0370-2693(99)00865-5.
Full textTzermias, Pavlos. "A note on a paper by Brenner." International Journal of Mathematics and Mathematical Sciences 31, no. 11 (2002): 701–2. http://dx.doi.org/10.1155/s0161171202202197.
Full textLaurinčikas, Antanas, and Renata Macaitienė˙. "Joint universality of the Riemann zeta-function and Lerch zeta-functions." Nonlinear Analysis: Modelling and Control 18, no. 3 (2013): 314–26. http://dx.doi.org/10.15388/na.18.3.14012.
Full textLaurinčikas, Antanas, and Kohji Matsumoto. "The joint universality and the functional independence for Lerch zeta-functions." Nagoya Mathematical Journal 157 (2000): 211–27. http://dx.doi.org/10.1017/s002776300000725x.
Full textKutbi, M. A., and A. A. Attiya. "Differential Subordination Results for Certain Integrodifferential Operator and Its Applications." Abstract and Applied Analysis 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/638234.
Full textWang, Xiao-Yuan, Lei Shi, and Zhi-Ren Wang. "Certain Integral Operator Related to the Hurwitz–Lerch Zeta Function." Journal of Complex Analysis 2018 (April 8, 2018): 1–7. http://dx.doi.org/10.1155/2018/5915864.
Full textLaurinčikas, A., and K. Matsumoto. "Joint value-distribution theorems on Lerch zeta-functions. II." Lithuanian Mathematical Journal 46, no. 3 (2006): 271–86. http://dx.doi.org/10.1007/s10986-006-0027-x.
Full textLaurincikas, A., and Kohji Matsumoto. "Joint value-distribution theorems for the Lerch zeta-functions." Lithuanian Mathematical Journal 38, no. 3 (1998): 238–49. http://dx.doi.org/10.1007/bf02465899.
Full text