Academic literature on the topic 'Level repulsion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Level repulsion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Level repulsion"
MA, TAO, and R. A. SEROTA. "LEVEL REPULSION IN INTEGRABLE SYSTEMS." International Journal of Modern Physics B 26, no. 13 (May 5, 2012): 1250095. http://dx.doi.org/10.1142/s0217979212500956.
Full textWan, Qingyun, Jun Yang, Wai-Pong To, and Chi-Ming Che. "Strong metal–metal Pauli repulsion leads to repulsive metallophilicity in closed-shell d8 and d10 organometallic complexes." Proceedings of the National Academy of Sciences 118, no. 1 (December 28, 2020): e2019265118. http://dx.doi.org/10.1073/pnas.2019265118.
Full textScharf, R., B. Dietz, M. Kuś, F. Haake, and M. V. Berry. "Kramers' Degeneracy and Quartic Level Repulsion." Europhysics Letters (EPL) 5, no. 5 (March 1, 1988): 383–89. http://dx.doi.org/10.1209/0295-5075/5/5/001.
Full textMa, Jian-Zhong. "On the degree of level repulsion." Physics Letters A 207, no. 5 (November 1995): 269–73. http://dx.doi.org/10.1016/0375-9601(95)00726-j.
Full textMüller, M., F. M. Dittes, W. Iskra, and I. Rotter. "Level repulsion in the complex plane." Physical Review E 52, no. 6 (December 1, 1995): 5961–73. http://dx.doi.org/10.1103/physreve.52.5961.
Full textSacha, Krzysztof, and Jakub Zakrzewski. "Driven Rydberg Atoms Reveal Quartic Level Repulsion." Physical Review Letters 86, no. 11 (March 12, 2001): 2269–72. http://dx.doi.org/10.1103/physrevlett.86.2269.
Full textFrank, Winfried, and Peter von Brentano. "Classical analogy to quantum mechanical level repulsion." American Journal of Physics 62, no. 8 (August 1994): 706–9. http://dx.doi.org/10.1119/1.17500.
Full textGarrett, J. D., J. Q. Robinson, A. J. Foglia, and H. Q. Jin. "Nuclear level repulsion and order vs. chaos." Physics Letters B 392, no. 1-2 (January 1997): 24–29. http://dx.doi.org/10.1016/s0370-2693(96)01528-6.
Full textHeiss, W. D. "Phases of wave functions and level repulsion." European Physical Journal D - Atomic, Molecular and Optical Physics 7, no. 1 (August 1, 1999): 1–4. http://dx.doi.org/10.1007/s100530050339.
Full textCaurier, E., and B. Grammaticos. "Extreme level repulsion for chaotic quantum Hamiltonians." Physics Letters A 136, no. 7-8 (April 1989): 387–90. http://dx.doi.org/10.1016/0375-9601(89)90420-9.
Full textDissertations / Theses on the topic "Level repulsion"
Iskra, Wlodzimierz, Markus Müller, Ingrid Rotter, and Frank-Michael Dittes. "Level repulsion in the complex plane." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-32095.
Full textIskra, Wlodzimierz, Markus Müller, Ingrid Rotter, and Frank-Michael Dittes. "Level repulsion in the complex plane." Forschungszentrum Rossendorf, 1995. https://hzdr.qucosa.de/id/qucosa%3A22036.
Full textBourcin, Guillaume. "Spincavitronics : repulsive and attractive energy levels in YIG bulk-microwave cavity coupled systems." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0447.
Full textThis thesis investigates the field of spincavitronics, focusing on the strong coupling between magnons and photons in three-dimensional (3D) cavities, leading to the formation of cavity magnon polaritons (CMPs). We explore the transition between the strong coupling and ultra-strong coupling regimes, achieving coupling strengths between 12% and 58% of the cavity frequency at room temperature. Magnons, with their tunable frequencies and long coherence times, are promising candidates for quantum memory and other quantum technologies, offering applications in quantum computing and long-distance quantum communication. Our research contributes to the development of a deeper understanding of magnon-photon interactions, with implications for improving the coupling strength and optimizing hybrid quantum systems. Additionally, this work presents a detailed study of the level attraction phenomenon between magnons and antiresonant photonic modes in 3D cavities. This phenomenon enables non-reciprocal photon transmission, which is essential for the design of advanced communication devices such as circulators and quantum memory systems. We develop a physical model to explain the emergence of these antiresonances, supported by experimental validation and simulations. These insights open new pathways for applying level attraction mechanisms in sensing technologies and quantum information processing, demonstrating the versatility of spincavitronics for future advancements in both quantum technologies and radiofrequency applications
Medina, Tulio Eduardo Restrepo. "Geração radiativa de repulsão vetorial para quarks leves." reponame:Repositório Institucional da UFSC, 2014. https://repositorio.ufsc.br/xmlui/handle/123456789/129306.
Full textMade available in DSpace on 2015-02-05T20:56:09Z (GMT). No. of bitstreams: 1 330269.pdf: 2723044 bytes, checksum: acc5bb1f16ab0d07a08b676e16f1ea63 (MD5) Previous issue date: 2014
Abstract: We apply a non-perturbative analytical method, known as the Optimized PerturbationTheory (OPT), to the Polyakov-Nambu-Jona-Lasinio (PNJL) model in order to investigate physical quantities associated with the QCD phase transitions. We consider the Taylor expansion of the pressure in powers of µ/T obtaining the second cumulant (c2) which is associated to the quark number susceptibility. We discuss how the OPT nite Nc radiative (quantum) corrections induce a contribution to the pressure which behaves as a vector repulsion even when such a channel is absent in the original classical potential. Our results are then compared with the ones furnished by lattice QCD simulations and by the large-Nc approximation showing that, physically, the OPT results resemble those furnished by the latter approximation when a repulsive vector channel is explicitly included in the classical potential. In this case, both approximations fail to correctly describe the Stefan-Boltzmann limit at high temperatures. We discuss how this problem can be circumvented by taking the couplings to be temperature dependent so as to simulate the phenomenon of asymptotic freedom. Since this is the first time the OPT is applied to the PNJL we also discuss many technicalities associated with the evaluation of two loop (exchange) diagrams.
Neste trabalho o método analítico não perturbativo conhecido como Teoria de Perturbação Otimizada (OPT) é aplicada ao modelo de Polyakov-Nambu-Jona-Lasinio (PNJL) para que quantidades físicas, associadas com as transições de fase da QCD, possam ser calculadas. A expansão da pressão em potências de µ/T é considerada para obter o segundo cumulante (c2) que é uma quantidade relacionada com a susceptibilidade do número de quarks. Primeiramente discutimos como as correções radiativas de Nc finito geradas pela OPT produzem uma contribuição que se comporta como um termo vetorial repulsivo mesmo quando este tipo de canal está ausente no potencial clássico original. Em seguida, nossos resultados são comparados com aqueles fornecidos pelas simulações na rede e também pela aproximação de Nc grande(LN). Fisicamente, os resultados da OPT são similares aqueles fornecidos pela aproximação LN quando um canal vetorial repulsivo é explicitamente incluido no potencial clássico. Neste caso, nenhuma destas aproximações analíticas produz corretamente o limite de Stefan Boltzmann para altas temperaturas. Contudo, nossos resultados sugerem como estes problemas podem ser contornados tomando-se as constantes de acoplamento como sendo dependentes da temperatura, de maneira que o fenômeno da liberdade assimptótica possa ser simulado. Esta é a primeira vez que a OPT é aplicada ao modelo de PNJL e por isto vários aspectos técnicos relacionados com o cálculo de diagramas de dois laços são também aqui apresentados.
Books on the topic "Level repulsion"
Fyodorov, Yan, and Dmitry Savin. Condensed matter physics. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.35.
Full textBołtuć, Piotr. Church-Turing Lovers. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190652951.003.0014.
Full textBook chapters on the topic "Level repulsion"
Haake, Fritz, Sven Gnutzmann, and Marek Kuś. "Level Repulsion." In Quantum Signatures of Chaos, 71–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97580-1_3.
Full textHaake, Fritz. "Level Repulsion." In Quantum Signatures of Chaos, 37–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04506-0_3.
Full textHaake, Fritz. "Level Repulsion." In Quantum Signatures of Chaos, 47–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05428-0_3.
Full textHeiss, W. D., and W. H. Steeb. "Level Repulsion and Exceptional Points." In Stochasticity and Quantum Chaos, 91–98. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0169-1_8.
Full textMate, C. Mathew, and Robert W. Carpick. "Physical Origins of Surface Forces." In Tribology on the Small Scale, 181–233. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199609802.003.0007.
Full textHarder, Michael, and Can-Ming Hu. "Cavity Spintronics: An Early Review of Recent Progress in the Study of Magnon–Photon Level Repulsion." In Solid State Physics, 47–121. Elsevier, 2018. http://dx.doi.org/10.1016/bs.ssp.2018.08.001.
Full textCampos, Esmeralda, and Genaro Zavala. "A Look into Students' Interpretation of Electric Field Lines." In Advances in Educational Technologies and Instructional Design, 342–64. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2026-9.ch017.
Full textWinter, Mark J., and John E. Andrew. "p-Block elements." In Foundations of Inorganic Chemistry. Oxford University Press, 2000. http://dx.doi.org/10.1093/hesc/9780198792888.003.0005.
Full textShestakov, Mikhail, and Alexander Korchagin. "Computer simulation of mechanisms to reduce the metabolic costs of running while taking into account the individual characteristics of the athlete." In Technology in Sports - Recent Advances, New Perspectives and Application [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1003066.
Full textBalucani, Umberto, and Marco Zoppi. "Generalized kinetic theory." In Dynamics of the Liquid State, 142–280. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780198517399.003.0004.
Full textConference papers on the topic "Level repulsion"
Lehmann, Kevin K., and Stephen L. Coy. "Statistical analysis of the microwave-optical double resonance spectra of NO2: ergodicity without level repulsion?" In AIP Conference Proceedings Volume 172. AIP, 1988. http://dx.doi.org/10.1063/1.37340.
Full textDong, Enyuan, Peng Tian, Yongxing Wang, and Wei Liu. "The design and experimental analysis of high-speed switch in 1.14kV level based on novel repulsion actuator." In 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). IEEE, 2011. http://dx.doi.org/10.1109/drpt.2011.5993995.
Full textPenev, Kamen, and Aristides A. G. Requicha. "A Potential Field Algorithm for Fixture Synthesis in 2D." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/cie-1343.
Full textGao, Bo, and Xiaofeng Peng. "Coupling Effect of Interfacial Transport on Particle-Surface Capillary Forces." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52033.
Full textChien, Jui-Ta, Yung-Hsing Fu, Chao-Ting Chen, Shun-Chiu Lin, Yi-Chung Shu, and Wen-Jong Wu. "Broadband Rotational Energy Harvesting Using Micro Energy Harvester." In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8029.
Full textJain, Kunal, and J. J. McCarthy. "Discrete Characterization of Cohesion in Gas-Solid Flows." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32491.
Full textMichopoulos, John G., Athanasios Iliopoulos, and Marcus Young. "Towards Static Contact Multiphysics of Rough Surfaces." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71055.
Full textFresco, Anthony N. "Solute Ion Linear Alignment as the Energy Source to Address Aquifer Depletion Fresh Water Scarcity and Sea Level Rise." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65930.
Full textKulkarni, Girish, and Sushil Mujumdar. "Level repulsions in high transmittance modes in one-dimensional random lattices." In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/photonics.2012.m1a.3.
Full textHe, S., and R. Ben Mrad. "Development of a multi-level repulsive force out-of-plane micro electrostatic actuator." In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5415321.
Full text