To see the other types of publications on this topic, follow the link: Levelized cost of electricity production.

Dissertations / Theses on the topic 'Levelized cost of electricity production'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 30 dissertations / theses for your research on the topic 'Levelized cost of electricity production.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Martínez, Díaz David José. "Production cost models with regard to liberalised electricity markets." Karlsruhe Univ.-Verl. Karlsruhe, 2008. http://d-nb.info/992181305/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kang, Moon Hee. "Development of high-efficiency silicon solar cells and modeling the impact of system parameters on levelized cost of electricity." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47647.

Full text
Abstract:
The objective of this thesis is to develop low-cost high-efficiency crystalline silicon solar cells which are at the right intersection of cost and performance to make photovoltaics (PV) affordable. The goal was addressed by improving the optical and electrical performance of silicon solar cells through process optimization, device modeling, clever cell design, fundamental understanding, and minimization of loss mechanisms. To define the right intersection of cost and performance, analytical models to assess the premium or value associated with efficiency, temperature coefficient, balance of system cost, and solar insolation were developed and detailed cost analysis was performed to quantify the impact of key system and financial parameters in the levelized cost of electricity from PV.
APA, Harvard, Vancouver, ISO, and other styles
3

Icyk, Bryan. "At What Cost? A comparative evaluation of the social costs of selected electricity generation alternatives in Ontario." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2899.

Full text
Abstract:
This thesis examines the private and external costs of electricity generated in Ontario by natural gas, wind, refurbished nuclear and new nuclear power. The purpose of the assessment is to determine a capacity expansion plan that meets the forecasted electricity supply gap in Ontario at the lowest social costs (i. e. the lowest aggregated private and external costs). A levelized unit electricity cost (LUEC) analysis is employed to evaluate private costs under both public and merchant perspectives. Computable external costs are monetized by adapting estimates from the literature that were previously developed using a primarily bottom-up damage cost method. <br /><br /> The findings reveal that social cost estimates for nuclear refurbishment are the lowest of the generation alternatives studied regardless of the evaluation perspective. Therefore, if the capacity expansion decision were based solely on these estimates, nuclear refurbishment should be utilized until its capacity constraints are reached. The generation alternative with the second lowest social costs depends on the perspective from which private costs are evaluated: from a public perspective, the remainder of the supply gap should be filled by new nuclear generation and from a merchant perspective, which is assumed to be more reflective of the current Ontario electricity market, natural gas-fired generation should be used. <br /><br /> Due to inherent uncertainty and limitations associated with the estimation of social costs, the estimates obtained in this thesis are considered to be context and data specific. A sensitivity analysis, which is employed to attempt to mitigate some of the uncertainty, shows that changes to key variables alter the capacity expansion plan. This reinforces the observation that methods and assumptions significantly affect social cost estimates. <br /><br /> Despite the limitations of this kind of evaluation, it is argued that a social cost assessment that is consistent, transparent and comprehensive can be a useful tool to assess the trade-offs of electricity generation alternatives if used along with existing evaluation criteria. Such an assessment can increase the likelihood that actual social costs are minimized, which can steer electricity generation in Ontario towards a system that is more efficient and sustainable.
APA, Harvard, Vancouver, ISO, and other styles
4

Heidari, Shayan. "Economic Modelling of Floating Offshore Wind Power : Calculation of Levelized Cost of Energy." Thesis, Mälardalens högskola, Industriell ekonomi och organisation, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-36130.

Full text
Abstract:
Floating offshore wind power is a relatively new technology that enables wind turbines to float above the sea level, tied by anchors at the seabed. The purpose of this work is to develop an economic model for the technology in order to calculate the total cost of a planned wind farm. Cost data are retrieved from reports and academic journals available online. Based on these data, a model in Microsoft Excel is developed which calculates the Levelized cost of energy (LCOE) for floating wind power plants as a function of several input values. As an addition to this model, financing offshore projects are described using literature study and by doing interviews with three major companies, currently investing in offshore wind. As a result, the model allows the user to calculate Capital expenditures, Operating expenditures and LCOE for projects at any given size and at any given site. The current LCOE for a large floating offshore wind farm is indicated to be in the range of 138-147 £/MWh. The outline from interviews was that today there is no shortage of capital for funding wind projects. However, in order to attract capital, the governmental regulatory of that market has to be suitable since it has a crucial impact on price risks of a project.
APA, Harvard, Vancouver, ISO, and other styles
5

Samuelsson, Mattias. "What are the drivers and forces for companies within the energy sector to invest in renewable energy technologies." Thesis, KTH, Entreprenörskap och Innovation, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189286.

Full text
Abstract:
Climate change and renewable energy technologies are internationally discussed topics. Recently the subject was discussed during the Paris climate conference, COP21. Which lead to the establishing of the first ever universal agreement, legally binding climate deal, which include 195 countries around the world. With the goal to decrease global warming by 1.5 degrees Celsius the need of new innovative technologies are increasing dramatically.   This thesis will examine the characteristics of renewable energy technology investment behavior by identifying drivers and forces for companies to invest in relatively new and less mature technologies, which are usually associated with high investment costs. Is it possible to financially justify investments in renewable energy technologies during the current market situation with historically low energy prices and with a production surplus? By examining the market and investments the aim is to identify and understand what drives companies to invest in renewable energy technologies and if it is profitable from a financial sustainable perspective.   The main results and derived conclusions are that RET investments behavior are influenced by several forces and drivers. The findings indicate that investments in RETs aren’t necessarily economical sustainable but rather that other objectives are of more importance than profitability in the short term.
APA, Harvard, Vancouver, ISO, and other styles
6

SONG, CONGCONG. "Electricity generation from hybrid PV-wind-bio-mass system for rural application in Brazil." Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211794.

Full text
Abstract:
Electrification of households in rural area and isolated regions plays a significant impact on the balanced economic development. Brazil grows with a high population growth rate, but still parts of rural area and isolated regions do not have the accessibility of electric power. This study focuses on the feasibility study of a hybrid PV-wind-biomass power system for rural electrification at Nazaré Paulista in southeast Brazil. This study was performed by using the hybrid renewable energy system software HOMER. The wind and solar data was collected from Surface meteorology and Solar Energy-NASA, and the biomass data was collected and estimated from other previous studies. The result shows, the hybrid PV-wind-biomass renewable system can meet 1,601 kWh daily demands and 360 kW peak load of the selected rural area. The power system composed of 200 kW PV panels, 200 kW biomass generator, 400 battery banks, and 200 kW converter. All the calculations were performed by Homer and the selection were based on the Net Present Cost (NPC) and Levelized cost of energy (COE). Because of the fossil fuels’ negative impacts on human health and environment, all the energy sources for this system are renewable energies which have less pollution.
APA, Harvard, Vancouver, ISO, and other styles
7

Okonkwo, Christopher Ndubuisi. "Electricity Sector Reform: Sourcing and Cost Management of Electricity for Steel Manufacturing in Nigeria." ScholarWorks, 2016. https://scholarworks.waldenu.edu/dissertations/3056.

Full text
Abstract:
In 2014, Lazard levelized cost of energy analysis model priced diesel powered systems at $0.225 – $0.404/KWh and a range of $0.165 – $0.242/KWh for gas-powered systems. The model gave a range of $0.28 – $0.33/kWh for diesel and a range of $0.14/kWh – $0.16/kW for gas fired. Nigeria has an abundance of gas reserves, but heavy gas flaring by oil companies perpetuates power failure across Nigeria. What has resulted is an unreliable electricity infrastructure and a high cost of alternative energy. The Electricity Power Sector Reform Act of 2005 started the reform process. Guided by decision theory, the purpose of this multiple case study was to understand the perceptions of business leaders at the steel manufacturing businesses on how the use of multiple supply sources of electricity might lead to survival, growth, and profitability. The study’s population consisted of 10 steel manufacturing companies in the Southwest region of Nigeria. The data were collected via semistructured interviews with the leaders who source energy, a review of archival records, and observations of company officials placing orders from multiple sources. The van Kaam method of data analysis generated 5 themes: cost of generating electricity and the investment in alternative sources of energy, erratic power supply and its impact on the steel production industry, quality of power supply relative to the capacity and its impact on profits, electricity factor in the steel production process, and use of multiple sources. These findings may contribute to social change by increasing employment opportunities for members of the local community, who will have an enhanced understanding about steel and seize entrepreneurial opportunities.
APA, Harvard, Vancouver, ISO, and other styles
8

Leal, Fernando Inti. "Economic and regulatory analysis of natural gas in Brazil: electricity generation, infrastructure, and energy integration." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3136/tde-06022019-101324/.

Full text
Abstract:
Brazil\'s discoveries of large gas reservoirs in the offshore ultra-deep waters of the presalt fields show a promising scenario, along with strategic investment and adequate policy, for the development of natural gas infrastructure and a sustainable transition in the Brazilian electricity mix. Such transition should occur through the use of transnational natural gas pipelines connected to large industrial facilities and power stations, as part of strategic planning to expand industrial usage, and avoid the shortage of electricity supply, with economic and environmental advantages. Since the most important debates of the new millennium are focused on globalization and sustainable development for nations, transnational energy integration in Latin America has been receiving increasingly attention from researchers and policy makers. In this overall context, the purpose of the present research was to develop a model to study, in a comparative manner, the thermoelectric generation, as well as to analyze the effect of legal frameworks and governmental policies on the development of infrastructure and natural gas market in Brazil, with a detailed study of the most relevant market and regulatory mechanisms. A comparison was performed in terms of the most relevant regulatory legislation in Brazil and other relevant Member States of the South American economic block. The study also evaluates the sanctions imposed by ANEEL Resolution n. 583 of 2013 on suppliers, due to the lack of NG supply for thermoelectric utilities, proposing an alternative formula, thought to mitigate the influence of averages and other electricity market parameters, therefore decreasing the sanction value for the NG supplier, without compromising the contract neutrality. Different factors were analyzed in order to determine which technology would be the most efficient in terms of levelized costs. Results indicated that natural gas-fired generators are very competitive and efficient, when compared to other thermoelectric sources in both economic and environmental aspects, even when externalities were included. Also, that further strategic investment and adequate regulatory policy changes are required from the market agents, in order to foster the development of pipeline infrastructure and the expansion of natural gas use in Brazil. The study also demonstrates that the environmental impact of the CH4 leakage equals that of CO2 release from combustion at about 4.2% leakage on a mass basis, when methane leakage rises to a level in which natural gas becomes as greenhouse gas intensive as biomass.<br>As descobertas de substanciais reservatórios de gás natural no Brasil, localizados em águas ultra profundas após a camada Pré-Sal, demonstram um cenário promissor, aliado a investimentos estratégicos e a políticas públicas adequadas, para o desenvolvimento da infraestrutura de gás natural e uma transição sustentável na matriz elétrica brasileira. Tal transição deveria ocorrer por intermédio do uso de tubulação transnacional de gás natural, conectada a grandes instalações industriais e a usinas termelétricas, como parte de um planejamento estratégico voltado à expansão do uso de gás natural na indústria e a evitar a escassez no suprimento de energia elétrica, com vantagens econômicas e ambientais. Considerando que os debates mais relevantes do novo milênio estão focados na globalização e no desenvolvimento sustentável das nações, a integração transnacional na América Latina tem recebido crescente atenção por parte de pesquisadores e de elaboradores das políticas públicas. Nesse contexto geral, a proposta da presente pesquisa foi a de desenvolver um modelo para estudar, de uma forma comparativa, a geração termelétrica, bem como analisar o impacto do arcabouço jurídico-regulatório e das políticas governamentais no desenvolvimento da infraestrutura e do mercado do gás natural no Brasil, com um estudo detalhado dos mais relevantes mecanismos regulatórios e de mercado. Foi realizado, ainda, um comparativo da legislação regulatória do gás natural no Brasil com outros Estados-Membros relevantes do Mercosul. O estudo também avalia as sanções impostas pela Resolução ANEEL n. 583 de 2013 nos fornecedores, devido a corte no suprimento de gás natural para empreendimentos de geração termelétrica, propondo um cálculo alternativo visando a mitigar a influência das médias e outros parâmetros intrínsecos ao mercado de energia, dessa maneira reduzindo as sanções contratuais para o fornecedor de gás natural, sem prejudicar a neutralidade contratual. Diferentes fatores foram analisados de forma a determinar qual tecnologia seria a mais eficiente em termos de custos nivelados de eletricidade. Os resultados indicaram que as termelétricas a gás natural são muito competitivas e eficientes, quando comparadas com outros tipos de combustível, tanto pelo aspecto ambiental quanto pelo econômico, mesmo quando externalidades são incluídas. Ainda, que são necessárias mudanças nas políticas regulatórias e no investimento estratégico por parte dos agentes do mercado, de forma a incentivar o desenvolvimento de infraestrutura e a expansão do uso do gás natural no Brasil. O estudo também evidencia que o impacto ambiental do vazamento de CH4 se iguala àquele do CO2 liberado pela combustão em cerca de 4.2% em base mássica, quando o vazamento de metano atinge um nível em que seu impacto como gás do efeito estufa fica equivalente à biomassa.
APA, Harvard, Vancouver, ISO, and other styles
9

Alasadi, Habeeb A. "100% Renewable Energy for Residences in Seven Counties in Ohio." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1493070390195179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tomosk, Steven. "Applications of Traditional and Concentrated Photovoltaic Technologies for Reducing Electricity Costs at Ontario Data Centers." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34324.

Full text
Abstract:
Demand for cloud-based applications and remote digital storage is increasing. As such, data center capacities will need to expand to support this shift in computing. Data centers consume substantial amounts of electricity in support of their operations, and larger data centers will mean that more energy is consumed. To reduce electricity bills, data center operators must explore innovative options, and this thesis proposes leveraging solar technology for this purpose. Three different photovoltaic and concentrated photovoltaic costing scenarios, as well as four different Ontario-based electricity tariff scenarios – time-of-use, feed-in tariff, power purchase agreement, and a peak-dependent electricity charge involving the province’s global adjustment fee – will be used to determine if there is a business case for using solar technology at data centers in Ontario to reduce energy costs. Discounted net present value, return on investment, internal rate of return, and levelized cost of electricity will be calculated to determine the economic viability of solar for this application, and both deterministic and stochastic results will be provided. Sensitivity of the four metrics to variability from energy yield, operations and maintenance costs, as well as system prices will also be presented.
APA, Harvard, Vancouver, ISO, and other styles
11

Mehdijev, Shamil. "Dimensioning and Life Cycle Costing of Battery Storage System in residential housing- A case study of Local System Operator Concept." Thesis, KTH, Elektroteknisk teori och konstruktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211559.

Full text
Abstract:
growing concern on achieving environmental sustainability and at the same time making economical savings has become a necessity in our society. The prices of different battery energy storage technologies together with PV cells are declining all around the globe which has led to the fact that there is an increased interest in investing and using these technologies to be able to reach environmental sustainability. The combined system however, must be accurately calculated both when it comes to the sizing and the different costs related to the combined system to be able to make an economical saving. This thesis addresses both of those aspects in Sweden where a residential building with roof-top installed PV system is assessed with a battery energy storage system. An investigation is necessary to be able to assess the different battery storage technologies available in the market today with their specific technical and economical specifications. The electricity market in Sweden, the role of the Distribution System Operator on the electricity pricing with different time tariffs and fuse size subscription, PV generation and battery specifications are investigated and modeled in this study. Sizing of the different battery technologies for the given system is accomplished through a methodology that is developed in this project for the Swedish system. The calculated size of the battery is then used in the Life Cycle Cost analysis, using Monte Carlo simulations for a chosen period of 25 years.Calculations shows that the most appropriate size for the battery system with the given parameters is 6 kWh for all the battery types investigated in this study. The size of the batteries is also shown to be mainly dependent on the charging/discharging time together with the set fuse size margin. Profitability of the Battery Energy Storage system is proven to be mainly dependent on the fuse size downgrade. Sulphur-Sodium battery result in the greatest savings while Vanadium Redox batteries in the least when sizing the batteries. Lithium-Ion battery technology however is most likely to result in the lowest Levelized Cost of Electricity, total- and cycle costs while the highest Net Present Value with 90 % probability in the Monte Carlo simulations. Lithium-Ion battery technology is also found to have the highest probability of having a positive NPV compared to the lowest probability for Sulphur-Sodium battery technology. Lead-Acid battery technology is however shown to have the least uncertainties compared to other Battery Energy Storage technologies due to its maturity. It is additionally shown that government subsidy plays a crucial role when investing in the battery storage system. However, even with the case of removed government subsidy, Lithium-Ion battery technology still results in the largest probability of having a positive NPV while Sulphur-Sodium battery technology results in the lowest probability of having a positive NPV.<br>Den växande oron för att uppnå miljömässig hållbarhet och samtidigt göra ekonomiska besparingar har blivit en nödvändighet i vårt samhälle. Priserna på olika energilagrings teknologier så som batterier tillsammans med PV-celler minskar runt om i världen vilket har lett till att det finns ett ökat intresse när det gäller att investera och använda dessa teknologier för att kunna nå miljömässig hållbarhet. Det kombinerade systemet måste dock noggrant beräknas både när det gäller storleken och de olika kostnaderna för det kombinerade systemet för att kunna göra en ekonomisk besparing. Denna avhandling behandlar båda dessa aspekter i Sverige där en bostadsbyggnad med takmonterat PV system utvärderas med ett batteri system. En undersökning är nödvändig för att kunna bedöma de olika batteri teknologier som finns tillgängliga på marknaden idag med sina specifika tekniska och ekonomiska specifikationer. Elmarknaden i Sverige, Distribution System Operatörs roll för elprissättning med olika tidstariffer och säkringsabonnemang, PV-generation och batterispecifikationer undersöks och modelleras i denna studie. Dimensionering av olika batteri teknologier för det givna systemet uppnås genom en metod som utvecklats i detta projekt för det svenska systemet. Den beräknade storleken på batteriet används sedan i livscykelkostnadsanalysen, med Monte Carlo-simuleringar under en vald period på 25 år. Beräkningar visar att den optimala storleken för batterisystemet med de angivna parametrarna är 6 kWh för alla batterityper som undersöktes i denna studie. Batteriets storlek visar sig också vara huvudsakligen beroende av laddning / urladdningstiden tillsammans med den inställda säkrings storleken. Lönsamheten hos batterilagringssystemet visar sig vara huvudsakligen beroende av säkringens nedgradering. Svavel-Natriumbatteriet resulterar i de största besparingarna medan Vanadium Redox batteriet i de minsta när dimensionering av batteriet äger rum. Litium-Ion batteriet är emellertid sannolikt att leda till den lägsta nivån av elkostnader, total- och cykelkostnader, medan det högsta nettoförsäljningsvärdet med 90% sannolikhet i Monte Carlo-simuleringarna. Litium-Ion batteriet befanns också ha den högsta sannolikheten att ha en positiv NPV jämfört med Svavel-Natriumbatteriet som resulterar i den lägsta sannolikheten. Lead-Acid batteriet visar sig ha den minsta osäkerheten i jämförelse med andra batterilagrings teknologier på grund av dess mognad. Det framgår dessutom att statlig subvention spelar en avgörande roll när man investerar i ett batteri lagrings system. Dock även med borttagna statliga subventioner, resulterar Litium-Ion batteriet fortfarande största sannolikheten för att ha en positiv NPV, medan Svavel-Natriumbatteriet resulterar den lägsta sannolikheten för att ha en positiv NPV.
APA, Harvard, Vancouver, ISO, and other styles
12

Martínez, Díaz David José [Verfasser], and O. [Akademischer Betreuer] Rentz. "Production cost models with regard to liberalised electricity markets / David José Martinez Diaz ; Betreuer: O. Rentz." Karlsruhe : KIT Scientific Publishing, 2008. http://d-nb.info/1185224637/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ravi, Kumar Swetha. "A techno-economic analysis of a residential solar Photovoltaic system installed in 2010 : A comparative case study between California and Germany." Thesis, KTH, Energi och klimatstudier, ECS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105187.

Full text
Abstract:
With environmental concerns and energy needs increasing, many regions in the world are promoting renewable energy technologies making use of various policy instruments. Although today the PV systems price is decreasing, which gives it a competitive edge; we see the technology still being dependent on policy instruments for its dissemination.   The aim of this study is to research on whether or not a solar PV system is economically viable under certain circumstances. The study analyzes this by performing a cost beneficial analysis for the lifetime of the solar PV system making use of a discounted savings model. The systems being considered in this study are from California and Germany as these regions are leading in solar PV dissemination in their respective regions. The policies that are aiding the deployment of solar PV technologies are varied and thus this study compares benefits from different policy instrument for a residential customer investing in a solar PV system.   The research objectives in this study are pursued making use of major concepts such as Grid Parity, Levelized Cost of Electricity and financial methods such as discounting.  Further, to understand how the different independent variables such as retail electricity prices, PV system pricing, WACC, self-consumption rate and storage availability are having an impact and how the results change with variation in these variables, a sensitivity analysis is conducted.   The results obtained in this study show that a solar PV system installed in California and Germany both make net benefits over their lifetime. When compared, the Californian solar PV system under the Net Energy Metering policy is making more net economic benefits in the range of $ 40,351 in Eureka and $53,510 in San Francisco; when compared to the German solar PV systems under the Feed in Tariff ranging $4,465 in Berlin and $11,769 in Munich. Furthermore the Californian solar PV systems still prove to be more beneficial even when compared to the German solar PV systems under the self-consumption law of the Feed in Tariff ranging $ 6,443 in Berlin and $ 13,141 in Munich.  But when the self-consumption rate is increased in the German case, it is noted that the associated benefits increase.   The study at hand thus results in the California Net Energy Meter policy instrument proving to be more beneficial to a residential customer than the German Feed in tariff with and without self-consumption. Another important finding made in this study is that despite the German solar PV system making lesser benefits than the Californian ones, they attain Grid Parity before the ones in California.
APA, Harvard, Vancouver, ISO, and other styles
14

Lansing, Stephanie A. "Performance and Optimization of Low-cost Digesters for Energy Production and Treatment of Livestock Wastewater." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1223474543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bergvall, Daniel. "Cost Comparison of Repowering Alternatives for Offshore Wind Farms." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-395298.

Full text
Abstract:
The aim of this thesis is to evaluate different repowering alternatives from the viewpoint of increasing power production from existing offshore wind farms (OWF), as some of the first commissioned OWFs are approaching the end of their expected lifetime. The thesis presents a literature review of components and financial aspects that are of importance for repowering of OWFs. In the literature review, risks and uncertainties regarding repowering are also lifted and analysed. The thesis contains a case study on Horns Rev 1 OWF, where three different repowering scenarios are evaluated by technical and financial performance, aiming to compare the cost of repowering alternatives. The design of the case study is based around previous studies of offshore repowering having focused mainly on achieving the lowest possible levelized cost of energy (LCoE) and highest possible capacity factor, often resulting in suggested repowering utilizing smaller wind turbines than the existing ones. In order to evaluate the financial viability of repowering alternatives, the software RETScreen Expert was used to estimate the annual energy production (AEP) after losses and calculate the net present value (NPV) and LCoE for lifetime extension and full repowering utilizing different capacity wind turbines. Input values from the literature as well as real wind resource measurements from the site was utilized to achieve as accurate results as possible. The result of the case study shows that repowering of OWFs have the possibility of providing a very strong business case with all scenarios resulting in a positive NPV as well as lower LCoE than the benchmarked electricity production price. Although the initial investment cost of the different repowering alternatives presented in this thesis still are uncertain to some extent, due to the lack of reliable costs for repowering alternatives, this thesis provides a base for further research regarding the repowering of OWFs.
APA, Harvard, Vancouver, ISO, and other styles
16

Hou, Novalie, and Sofie Jiang. "Concentrator photovoltaics combined with reverse osmosis and membrane distillation for high-efficiency desalination and electricity production." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282908.

Full text
Abstract:
This project is a bachelor thesis and aims to study the integration of concentrator photovoltaics (CPV), reverse osmosis (RO) and membrane distillation (MD) for water desalination and purification. In this report, an introduction of the need for efficient water desalination is presented. Following the introduction, relevant literature has been reviewed to build up the fundamental understanding of CPV, RO and MD. A general classification of CPV subsequently introduced. In order to acquire a more comprehensive understanding of CPVs, two case studies were performed with two different types of CPV/T. The cost efficiency of each type of CPV was analysed when integrated with RO and MD systems. The result turns out to be that it was not economically beneficial to have MD in the integrated system. The reason behind is the extensive thermal energy demand of MD. Other affecting parameters, such as location and system types were also discussed. Lastly, improvements and suggestions for further studies were considered.<br>Detta projekt är en kandidatuppsats och syftar till att studera ett integrerande system bestående av koncentrerade solceller (CPV), omvänd osmos (RO) och membrandestillation (MD) för vattenavsaltning och rening. Rapporten börjar med en introduktion om behovet av effektiv avsaltning av vatten. Relevant litteratur har granskats för att bygga upp den grundläggande förståelsen för CPV, RO och MD. Därefter gjordes en klassificering av CPV. För att få en mer omfattande förståelse av CPV valdes två olika typer av CPV /T för en djupare undersökning. Kostnadseffektiviteten för varje CPV analyserades, när dessa var integrerade med RO- och MD-system. Resultatet visar sig att det tyvärr inte var ekonomiskt fördelaktigt att ha med MD i det integrerade systemet. Anledningen bakom detta var det omfattande termiska energibehovet för MD. Andra avgörande faktorer, såsom plats och systemtyp diskuterades tillika. Slutligen avslutades rapporten med förslag på förbättringar och områden för vidare studier.
APA, Harvard, Vancouver, ISO, and other styles
17

Vasquez, Padilla Ricardo. "Simplified Methodology for Designing Parabolic Trough Solar Power Plants." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3390.

Full text
Abstract:
The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for the commercial power industry. Compared to conventional power plants, parabolic trough solar power plants produce significantly lower levels of carbon dioxide, although additional research is required to bring the cost of concentrator solar plants to a competitive level. The cost reduction is focused on three areas: thermodynamic efficiency improvements by research and development, scaling up of the unit size, and mass production of the equipment. The optimum design, performance simulation and cost analysis of the parabolic trough solar plants are essential for the successful implementation of this technology. A detailed solar power plant simulation and analysis of its components is needed for the design of parabolic trough solar systems which is the subject of this research. Preliminary analysis was carried out by complex models of the solar field components. These components were then integrated into the system whose performance is simulated to emulate real operating conditions. Sensitivity analysis was conducted to get the optimum conditions and minimum levelized cost of electricity (LCOE). A simplified methodology was then developed based on correlations obtained from the detailed component simulations. A comprehensive numerical simulation of a parabolic trough solar power plant was developed, focusing primarily on obtaining a preliminary optimum design through the simplified methodology developed in this research. The proposed methodology is used to obtain optimum parameters and conditions such as: solar field size, operating conditions, parasitic losses, initial investment and LCOE. The methodology is also used to evaluate different scenarios and conditions of operation. The new methodology was implemented for a 50 MWe parabolic trough solar power plant for two cities: Tampa and Daggett. The results obtained for the proposed methodology were compared to another physical model (System Advisor Model, SAM) and a good agreement was achieved, thus showing that this methodology is suitable for any location.
APA, Harvard, Vancouver, ISO, and other styles
18

Färegård, Simon, Marko Miletic, and Schultz Erik von. "Prospects of Renewable Energy for the New City of El Alamein, Egypt : An Energy System Model using OSeMOSYS to obtain the most cost-efficient electricity production mix." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254405.

Full text
Abstract:
With the motivation to mitigate the effects caused by one of humankind’s biggest challenges, climate change, the purpose of this minor field study was to examine the prospects of renewable energy technologies as part of a larger ambition to offer clean and affordable energy for all, in line with United Nations Sustainable Development Goals. The study was conducted for El Alamein in Egypt, a city under construction that will house four million residents. By combining a field study and an interview with literature search, the information needed for an energy system model was gathered. The modelling system OSeMOSYS was thereafter used to calculate the most cost-efficient electricity mix for the model period of 2020 to 2040, based on different scenarios and technologies. The total discounted cost and amount of emissions were thereafter compared between the scenarios, and the most cost-efficient scenario at reducing emissions was identified. Of the scenarios that were compared to the reference case, the one where 50 % of the electricity was produced from renewables in 2040 proved to be the most cost-efficient option. In addition, this scenario was also the most cost efficient at reducing emissions by a large margin. Regarding the renewable technologies, solar photovoltaics, which represented a majority of the renewable electricity production, was evidently the most cost-efficient technology as well as the one with the highest potential for future implementation, followed by onshore wind power. Moreover, concentrating solar power and waste to energy were proven to have a lower potential. The conclusions drawn were that the city of El Alamein could get a substantial part of its electricity from renewables and that solar PV was the best technology for that purpose. The final conclusion was that there might exist great potential for renewable energy in Egypt.<br>Med ambitionen att försöka lindra konsekvenserna av vad som idag är en av människans största utmaningar, klimatförändringen, är syftet med denna minor field study att utvärdera förutsättningarna för förnyelsebara energitekniker i Egypten. Detta ligger i linje med en större ambition att erbjuda ren och prisvärd energi i enlighet med de globala hållbarhetsmålen. Fältstudien utfördes i Egypten och omfattade en ny stad under konstruktion, El Alamein, som förväntas hushålla fyra miljoner invånare. En fältstudie och tillhörande intervju kombinerades med en litteraturundersökning för att erhålla nödvändig information som sedan användes i modelleringen av energisystemet. Modelleringsverktyget OSeMOSYS användes för att erhålla den mest kostnadseffektiva energimixen för åren 2020 till 2040, baserat på ett flertal olika scenarier och tekniker. Den totala diskonterade kostnaden samt mängden utsläpp jämfördes mellan de olika scenarierna, och det mest kostnadseffektiva scenariot för att minska utsläpp identifierades. Av de scenarier som jämfördes med referensfallet, så var scenariot där förnyelsebara energitekniker stod för 50 % av elproduktionen år 2040 den mest kostnadseffektiva energimixen för att tillfredsställa behovet samt för att minska mängden utsläpp. Av de förnyelsebara energiteknikerna så visade sig solceller, som stod för en majoritet av den förnyelsebara produktionen, vara den mest kostnadseffektiva tekniken då den i samtliga förnyelsebara scenarier prioriterades av modellen. Därmed visade sig den vara den tekniken med högst potential för framtida implementationer, följt av landbaserad vindkraft. Koncentrerad solkraft i form av soltorn visade sig inte vara kostnadseffektiv då den inte bidrog till produktionen i något scenario. Avfallsförbränningen, som bidrog minimalt till energimixen, saknade tillgång till den mängd bränsle som hade krävts för att den skulle kunnat stå för en större andel av produktionen. Därmed konstaterades det att båda dessa teknologier hade en låg potential för framtida implementationer. De slutsatser som drogs var att staden El Alamein kunde få en betydande del av sin elektricitet från förnyelsebara energikällor samt att solceller var mest lämpad för det syftet då den var mest kostnadseffektiv. Utöver dessa så drogs slutsatsen att det kan finnas stor potential för förnyelsebar energi i Egypten.
APA, Harvard, Vancouver, ISO, and other styles
19

Weiland, Daniel Albert. "Rooftop pv impacts on fossil fuel electricity generation and co2 emissions in the pacific northwest." Thesis, Portland State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1547603.

Full text
Abstract:
<p> This thesis estimates the impacts of rooftop photovoltaic (PV) capacity on electricity generation and CO2 emissions in America's Pacific Northwest. The region's demand for electricity is increasing at the same time that it is attempting to reduce its greenhouse gas emissions. The electricity generated by rooftop PV capacity is expected to displace electricity from fossil fueled electricity generators and reduce CO2 emissions, but when and how much? And how can this region maximize and focus the impacts of additional rooftop PV capacity on CO2 emissions? To answer these questions, an hourly urban rooftop PV generation profile for 2009 was created from estimates of regional rooftop PV capacity and solar resource data. That profile was compared with the region's hourly fossil fuel generation profile for 2009 to determine how much urban rooftop PV generation reduced annual fossil fuel electricity generation and CO2 emissions. Those reductions were then projected for a range of additional multiples of rooftop PV capacity. The conclusions indicate that additional rooftop PV capacity in the region primarily displaces electricity from natural gas generators, and shows that the timing of rooftop PV generation corresponds with the use of fossil fuel generators. Each additional Wp/ capita of rooftop PV capacity reduces CO2 emissions by 9,600 to 7,300 tons/ year. The final discussion proposes some methods to maximize and focus rooftop PV impacts on CO2 emissions, and also suggests some questions for further research.</p>
APA, Harvard, Vancouver, ISO, and other styles
20

VASUDEVAN, ROHAN ADITHYA. "SWOT-PESTEL Study of Constraints to Decarbonization of the Natural Gas System in the EU Techno-economic analysis of hydrogen production in Portugal : Techno-economic analysis of hydrogen production in Portugal." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292186.

Full text
Abstract:
The exigent need to address climate change and its adverse effects is felt all around the world. As pioneers in tackling carbon emissions, the European Union continue to be head and shoulders above other continents by implementing policies and keeping a tab on its carbon dependence and emissions. However, being one of the largest importers of Natural Gas in the world, the EU remains dependent on a fossil fuel to meet its demands.  The aim of the research is to investigate the barriers and constraints in the EU policies and framework that affects the natural gas decarbonization and to investigate the levelized cost of hydrogen production (LCOH) that would be used to decarbonize the natural gas sector. Thus a comprehensive study, based on existing academic and scientific literature, EU policies, framework and regulations pertinent to Natural gas and a techno economic analysis of possible substitution of natural gas with Hydrogen, is performed. The motivation behind choosing hydrogen is based on various research studies that indicate the importance and ability to replace to natural gas. In addition, Portugal provides a great environment for cheap green hydrogen production and thus chosen as the main region of evaluation.  The study evaluates the current framework based on a SWOT ((Strength, Weakness, and Opportunities &amp; Weakness) analysis, which includes a PESTEL (Political, Economic, Social, Technological, Environmental &amp; Legal) macroeconomic factor assessment and an expert elicitation. The levelized cost of hydrogen is calculated for blue (SMR - Steam Methane Reforming with natural gas as the feedstock) and green hydrogen (Electrolyzer with electricity from grid, solar and wind sources). The costs were specific to Portuguese conditions and for the years 2020, 2030 and 2050 based on availability of data and the alignment with the National Energy and Climate Plan (NECP) and the climate action framework 2050. The sizes of Electrolyzers are based on the current Market capacities while SMR is capped at 300MW. The thesis only considers production of hydrogen. Transmission, distribution and storage of hydrogen are beyond the scope of the analysis.  Results show that the barriers are mainly related to costs competitiveness, amendments in rules/regulations, provisions of incentives, and constraints in the creation of market demand for low carbon gases. Ensuring energy security and supply while being economically feasible demands immediate amendments to the regulations and policies such as incentivizing supply, creating a demand for low carbon gases and taxation on carbon.  Considering the LCOH, the cheapest production costs continue to be dominated by blue hydrogen (1.33 € per kg of H2) in comparison to green hydrogen (4.27 and 3.68 € per kg of H2) from grid electricity and solar power respectively. The sensitivity analysis shows the importance of investments costs and the efficiency in case of electrolyzers and the carbon tax in the case of SMR. With improvements in electrolyzer technologies and increased carbon tax, the uptake of green hydrogen would be easier, ensuring a fair yet competitive gas market.<br>Det starka behovet av att ta itu med klimatförändringarna och deras negativa effekter är omfattande världen över. Den europeiska unionen utgör en pionjär när det gäller att såväl hantera sina koldioxidberoende och utsläpp som att implementera reglerande miljöpolitik, och framstår därmed som överlägsen andra stater och organisationer i detta hänseende. Unionen är emellertid fortfarande mycket beroende av fossilt bränsle för att uppfylla sina energibehov, och kvarstår därför som en av världens största importörer av naturgas.  Syftet med denna forskningsavhandling är att undersöka befintliga hinder och restriktioner i EU: s politiska ramverk som medför konsekvenser avkolningen av naturgas, samt att undersöka de utjämnande kostnaderna för väteproduktion (LCOH) som kan användas för att avkolna naturgassektorn. Därmed utförs en omfattande studie baserad på befintlig akademisk och vetenskaplig litteratur, EU: s politiska ramverk och stadgar som är relevanta för naturgasindustrin. Dessutom genomförs en teknisk-ekonomisk analys av eventuella ersättningar av naturgas med väte. Valet av väte som forskningsobjekt motiveras olika forskningsstudier som indikerar vikten och förmågan att ersätta till naturgas. Till sist berör studien Portugal. som tillhandahåller en lämplig miljö för billig och grön vätgasproduktion. Av denna anledning är Portugal utvalt som den viktigaste utvärderingsregionen.  Studien utvärderar det nuvarande ramverket baserat på en SWOT-analys ((Strength, Weakness, and Opportunities &amp; Weakness), som inkluderar en PESTEL (Political, Economical, Social, Technological, Environmental och Legal) makroekonomisk faktoranalys och elicitering. Den utjömnade vätekostnaden beräknades i blått (SMR - Ångmetanreformering med naturgas som råvara) och grönt väte (elektrolyser med el från elnät, sol och vindkällor). Kostnaderna var specifika för de portugisiska förhållandena under åren 2020, 2030 och 2050 baserat på tillgänglighet av data samt anpassningen till den nationella energi- och klimatplanen (NECP) och klimatåtgärdsramen 2050. Storleken på elektrolyserar baseras på den nuvarande marknadskapaciteten medan SMR är begränsad till 300 MW. Avhandlingen tar endast hänsyn till produktionen av vätgas. Transmission, distribution och lagring av väte ligger utanför analysens räckvidd.  Resultaten visar att hindren är främst relaterade till kostnadskonkurrens, förändringar i stadgar och bestämmelser, incitament och begränsningar i formerandet av efterfrågan på koldioxidsnåla gaser på marknaden. Att säkerställa energiförsörjning och tillgång på ett ekonomiskt hållbart sätt kräver omedelbara ändringar av reglerna och politiken, såsom att stimulera utbudet, att skapa en efterfrågan på koldioxidsnåla gaser och genom att beskatta kol.  När det gäller LCOH dominerar blåväte beträffande produktionskostnaderna (1,33 € per kg H2) jämfört med grönt väte (4,27 respektive 3,68 € per kg H2) från elnät respektive solenergi. Osäkerhetsanalysen visar vikten av investeringskostnader och effektiviteten vid elektrolysörer och koldioxidskatten för SMR. Med förbättringar av elektrolys-tekniken och ökad koldioxidskatt skulle upptagningen av grön vätgas vara enklare och säkerställa en rättvis men konkurrenskraftig gasmarknad.
APA, Harvard, Vancouver, ISO, and other styles
21

Mancuso, Martin. "Grid-connected micro-grid operational strategy evaluation : Investigation of how microgrid load configurations, battery energy storage system type and control can support system specification." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-40019.

Full text
Abstract:
Operational performance of grid-connected microgrid with integrated solar photovoltaic (PV) electricity production and battery energy storage (BES) is investigated.  These distributed energy resources (DERs) have the potential to reduce conventionally produced electrical power and contribute to reduction of greenhouse gas emissions.  This investigation is based upon the DER’s techno-economic specifications and theoretical performance, consumer load data and electrical utility retail and distribution data.  Available literature provides the basis for DER specification and performance.  Actual consumer load profile data is available for residential and commercial consumer sector customers.  The electrical utility data is obtained from Mälarenergi, AB.  The aim is to investigate how to use simulations to specify a grid connected microgrid with DERs (PV production and a BES system) for two consumer sectors considering a range of objectives.  An open-source, MATLAB-based simulation tool called Opti-CE has successfully been utilized.  This package employs a genetic algorithm for multi-objective optimization.  To support attainment of one of the objectives, peak shaving of the consumer load, a battery operational strategy algorithm has been developed for the simulation.  With respect to balancing peak shaving and self-consumption one of the simulations supports specification of a commercial sector application with 117 kWp PV power rating paired with a lithium ion battery with 41.1 kWh capacity.  The simulation of this system predicts the possibility to shave the customer load profile peaks for the month of April by 20%.  The corresponding self-consumption ratio is 88%.  Differences in the relationship between the load profiles and the system performance have been qualitatively noted.  Furthermore, simulation results for lead-acid, lithium-ion and vanadium-redox flow battery systems are compared to reveal that lithium ion delivers the best balance between total annualized cost and peak shaving performance for both residential and commercial applications.
APA, Harvard, Vancouver, ISO, and other styles
22

(9525959), Reza Asadpour. "EXPLORING THE POTENTIAL OF LOW-COST PEROVSKITE CELLS AND IMPROVED MODULE RELIABILITY TO REDUCE LEVELIZED COST OF ELECTRICITY." Thesis, 2020.

Find full text
Abstract:
<div>The manufacturing cost of solar cells along with their efficiency and reliability define the levelized cost of electricity (LCOE). One needs to reduce LCOE to make solar cells cost competitive compared to other sources of electricity. After a sustained decrease since 2001 the manufacturing cost of the dominant photovoltaic technology based on c-Si solar cells has recently reached a plateau. Further reduction in LCOE is only possible by increasing the efficiency and/or reliability of c-Si cells. Among alternate technologies, organic photovoltaics (OPV) has reduced manufacturing cost, but they do not offer any LCOE gain because their lifetime and efficiency are significantly lower than c-Si. Recently, perovskite solar cells have showed promising results in terms of both cost and efficiency, but their reliability/stability is still a concern and the physical origin of the efficiency gain is not fully understood.</div><div><br></div>In this work, we have collaborated with scientists industry and academia to explain the origin of the increased cell efficiency of bulk solution-processed perovskite cells. We also explored the possibility of enhancing the efficiency of the c-Si and perovskite cells by using them in a tandem configuration. To improve the intrinsic reliability, we have investigated 2D-perovskite cells with slightly lower efficiency but longer lifetime. We interpreted the behavior of the 2D-perovskite cells using randomly stacked quantum wells in the absorber region. We studied the reliability issues of c-Si modules and correlated series resistance of the modules directly to the solder bond failure. We also found out that finger thinning of the contacts at cell level manifests as a fake shunt resistance but is distinguishable from real shunt resistance by exploring the reverse bias or efficiency vs. irradiance. Then we proposed a physics-based model to predict the energy yield and lifetime of a module that suffers from solder bond failure using real field data by considering the statistical nature of the failure at module level. This model is part of a more comprehensive model that can predict the lifetime of a module that suffers from more degradation mechanisms such as yellowing, potential induced degradation, corrosion, soiling, delamination, etc. simultaneously. This method is called forward modeling since we start from environmental data and initial information of the module, and then predict the lifetime and time-dependent energy yield of a solar cell technology. As the future work, we will use our experience in forward modeling to deconvolve the reliability issues of a module that is fielded since each mechanism has a different electrical signature. Then by calibrating the forward model, we can predict the remaining lifetime of the fielded module. This work opens new pathways to achieve 2030 Sunshot goals of LCOE below 3c/kWh by predicting the lifetime that the product can be guaranteed, helping financial institutions regarding the risk of their investment, or national laboratories to redefine the qualification and reliability protocols.<br>
APA, Harvard, Vancouver, ISO, and other styles
23

Langels, Hanna, and Oskar Syrjä. "Hydrogen Production and Storage Optimization based on Technical and Financial Conditions : A study of hydrogen strategies focusing on demand and integration of wind power." Thesis, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-435176.

Full text
Abstract:
There has recently been an increased interest in hydrogen, both as a solution for seasonal energy storage but also for implementations in various industries and as fuel for vehicles. The transition to a society less dependent on fossil fuels highlights the need for new solutions where hydrogen is predicted to play a key role. This project aims to investigate technical and economic outcomes of different strategies for production and storage of hydrogen based on hydrogen demand and source of electricity. This is done by simulating the operation of different systems over a year, mapping the storage level, the source of electricity, and calculating the levelized cost of hydrogen (LCOH). The study examines two main cases. The first case is a system integrated with offshore wind power for production of hydrogen to fuel the operations in the industrial port Gävle Hamn. The second case examines a system for independent refueling stations where two locations with different electricity prices and traffic flows are analyzed. Factors such as demand, electricity prices, and component costs are investigated through simulating cases as well as a sensitivity analysis. Future potential sources of income are also analyzed and discussed. The results show that using an alkaline electrolyzer (AEL) achieves the lowest LCOH while PEM electrolyzer is more flexible in its operation which enables the system to utilize more electricity from the offshore wind power. When the cost of wind electricity exceeds the average electricity price on the grid, a higher share of wind electricity relative to electricity from the grid being utilized in the production results in a higher LCOH. The optimal design of the storage depends on the demand, where using vessels above ground is the most beneficial option for smaller systems and larger systems benefit financially from using a lined rock cavern (LRC). Hence, the optimal design of a system depends on the demand, electricity source, and ultimately on the purpose of the system. The results show great potential for future implementation of hydrogen systems integrated with wind power. Considering the increased share of wind electricity in the energy system and the expected growth of the hydrogen market, these are results worth acknowledging in future projects.
APA, Harvard, Vancouver, ISO, and other styles
24

Erturk, Mehmet. "Economic analysis of wind and solar energy sources of Turkey." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-05-2993.

Full text
Abstract:
Renewable energy sources have become very popular in the last years in electricity generation thanks to the technological developments, the increase in the price of fossil fuels and the environmental concerns. These factors have also prompted Turkey to utilize her very rich renewable energy sources to meet the demand increasing around 7% annually. In this study, solar and wind energy potential of Turkey is analyzed in terms of its economics to find out whether these sources are real alternatives to fossil fuels in electricity generation. Before this analysis, wind and solar energy technologies and costs and wind and solar energy potential of Turkey are discussed. Then, models are set up for five technologies which are onshore wind, offshore wind, solar PV, solar trough and solar tower technologies models to calculate cash flows which are used to calculate payback, NPV, IRR, LCE and shut-down price to conduct economic analysis. In addition to base case scenario, uncertainty analysis is done for the most promising technologies which are onshore wind and solar tower technologies by evaluating NPV and LCE under uncertain environment. The main finding of these analyses is that only onshore wind projects are attractive in Turkey; none of other technologies is attractive. However, with a minor increase in the regulated price for solar thermal electricity, tower plant projects will also be attractive.<br>text
APA, Harvard, Vancouver, ISO, and other styles
25

Lyu, Han-Jing, and 呂涵靜. "A Cost-Benefit Analysis on Production of Ethanol and Electricity from Forest Thinning Wood in Taiwan." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/91130850324552332112.

Full text
Abstract:
碩士<br>國立臺灣大學<br>森林環境暨資源學研究所<br>96<br>The carbon dioxide in atmosphere had increased rapidly in recent decades, it caused serious global warning problems. Furthermore, current oil price is soaring sharply, and bioenergy becomes one of the alternatives to fossil fuel. According to literature reviews, forest thinning not only can increase carbon sequestration of forestland but also provide wood for producing bioenergy. The study proposed two projects to utilize forest thinning wood to produce ethanol and electricity respectively, then applied cost-benefit analysis to evaluate the two projects. The study found that the ethanol project of forest thinning wood had higher return than the electricity project. At 16% required rate of return, the ethanol project had net present value of 55.75 million NT dollars, the electricity project had 7.7 million NT dollars. Furthermore, the ethanol project had 18.4% internal rate of return, the electricity project 19%. The comparison indicated the ethanol project is more feasible economically. Besides, this study used cost-benefit analysis to evaluate different subsidy measures for promotion of using forest thinning wood to produce ethanol. It found the form of grants is the most effective measure in terms of the maximum the internal rate of return of the four subsidy regime.
APA, Harvard, Vancouver, ISO, and other styles
26

"Feasibility Study of Use of Renewable Energy to Power Greenfield Eco-Industrial Park." Master's thesis, 2014. http://hdl.handle.net/2286/R.I.27383.

Full text
Abstract:
abstract: An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain. Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, most of them have failed for various factors: geographic restrictions by governmental organizations on use of technology, cost of technology, the inability of industries to effectively communicate their upstream and downstream resource usage, and to diminishing natural resources such as water, land and non-renewable energy (NRE) sources for energy production. This paper presents a feasibility study conducted to evaluate the comparative environmental, economic, and geographic impacts arising from the use of renewable energy (RE) and NRE to power EIPs. Life Cycle Assessment (LCA) methodology, which is used in a variety of sectors to evaluate the environmental merits and demerits of different kinds of products and processes, was employed for comparison between these two energy production methods based on factors such as greenhouse gas emission, acidification potential, eutrophication potential, human toxicity potential, fresh water usage and land usage. To complement the environmental LCA analysis, levelized cost of electricity was used to evaluate the economic impact. This model was analyzed for two different geographic locations; United States and Europe, for 12 different energy production technologies. The outcome of this study points out the environmental, economic and geographic superiority of one energy source over the other, including the total carbon dioxide equivalent emissions, which can then be related to the total number of carbon credits that can be earned or used to mitigate the overall carbon emission and move closer towards a net zero carbon footprint goal thus making the EIPs truly sustainable.<br>Dissertation/Thesis<br>LCOE calculation charts<br>Gabi Life-cycle analysis<br>Masters Thesis Mechanical Engineering 2014
APA, Harvard, Vancouver, ISO, and other styles
27

BAO, MEI-RU, and 包美如. "The study of the linkage effects on electricity rate and production cost when power is supplied by different power unit combination." Thesis, 1988. http://ndltd.ncl.edu.tw/handle/02501723105628524287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Beigzadeh, Ashkan. "Economic Evaluation of an Advanced Super Critical Oxy-Coal Power Plant with CO2 Capture." Thesis, 2009. http://hdl.handle.net/10012/4693.

Full text
Abstract:
Today’s carbon constrained world with its increasing demand for cheap energy and a fossil fuel intensive fleet of power producers is making carbon capture and storage (CCS) desirable. Several CCS technologies are under investigation by various research and development groups globally. One of the more promising technologies is oxy-fuel combustion, since it produces a CO2 rich flue gas which requires minor processing to meet storage condition requirements. In this study the economics of an advanced super critical oxy-coal power plant burning lignite, simulated in-house was assessed. A robust and user-friendly financial tool box has been developed with commonly acceptable default parameter settings. Capital, operation and maintenance costs were estimated along with corresponding levelized cost of electricity and CO2 avoidance costs calculated using the detailed financial model developed. A levelized cost of electricity of 131 $/MWhrnet along with a levelized CO2 avoidance cost of 64 $/tonne was estimated for an ASC oxy-coal power plant with CO2 capture. Also a levelized cost of electricity of 83 $/MWhrnet was estimated for an ASC air-fired coal power plant without CO2 capture capabilities as the base plant. The price of electricity was observed to increase from 83 $/MWhrnet to 131 $/MWhrnet translating into a 57% increase. The sensitivity of the overall economics of the process was assessed to several parameters. The overall economics was found sensitive to the choice chemical engineering plant cost index (CEPCI), capacity factor, size of power plant, debt ratio, fuel price, interest rate, and construction duration.
APA, Harvard, Vancouver, ISO, and other styles
29

Leite, Marta Dias. "Investment solution scenarios in floating solar photovoltaic versus overland solar." Master's thesis, 2018. http://hdl.handle.net/1822/57031.

Full text
Abstract:
Relatório de mestrado em International Business<br>Floating photovoltaic solar plants urge in a time when increasing demand for energy requires a shift to renewable energy resources as the limited availability of fossil fuels as well as global warming and climate change are all a reality. Furthermore, the increasing cost of land acquisition due to growing worldwide population and, consequently, reduced available land area restricts some countries such as Japan to construct big solar farms, giving room for the opportunity to deploy floating solar photovoltaic systems in water reservoirs. This research intends to aggregate qualitative and quantitative information about this type of technology, studying whether it is economically viable in the market or not. For that purpose, three criteria for a theoretical project evaluation will be assessed: Net Present Value, Internal Rate of Return and the Levelized Cost of Electricity. The later will be compared with the Levelized Cost of Electricity for overland photovoltaic plants and for combined cycle power stations, and with Iberian Electricity Market price. Due to the uncertainty of the cash-flows projections, a sensitivity and risk analysis will be conducted for a more robust interpretation of the results. Two possible locations were chosen in Portugal for the analysis, namely Venda Nova and Pracana hydro power plants. Economic indicators achieved demonstrate that the project is not economically viable for both locations. Considering a 25-years economic life, levelized cost of electricity for Venda Nova 129 €/MWh and for Pracana is 114 €/MWh, being a less competitive generating technology than overland photovoltaic plants and combined cycle power stations.<br>As centrais fotovoltaicas flutuantes surgem numa altura em que a crescente procura por energia exige uma forte aposta nas energias renováveis, dada a disponibilidade limitada dos combustíveis fósseis, bem como a realidade das mudanças climáticas e do aquecimento global. Para além disso, o aumento do custo de aquisição de terras devido ao crescimento da população mundial e, consequentemente, uma redução dos terrenos, restringe muitos países, como o Japão, em construir centrais solares, surgindo a oportunidade para a instalação de centrais solares fotovoltaicas flutuantes em todo o tipo de reservas de água. O objetivo deste estudo é agregar informação qualitativa e quantitativa acerca deste tipo de tecnologia, determinando se é economicamente viável no mercado ou não. Para esse efeito, três critérios de avaliação de um projeto teórico serão utilizados: o Valor Atualizado Líquido; a Taxa Interna de Rendibilidade; e o Custo Nivelado de Produção. Este último critério será comparado com os Custos Nivelados de Produção de uma central solar em terra e de uma central de ciclo combinado; e com o preço do Mercado Ibérico de Eletricidade. Dada a incerteza das projeções dos fluxos de caixa, será realizada uma análise de sensibilidade e de risco para uma interpretação mais robusta dos resultados. Foram escolhidas duas possíveis localizações em Portugal para o projeto em análise, nomeadamente as albufeiras das barragens de Venda Nova e Pracana. Os indicadores económicos calculados demonstram que o projeto não é economicamente viável para as duas localizações. Considerando um período de vida útil de 25 anos, o Custo Nivelado de Produção para Venda Nova é de 129 €/MWh e para Pracana é de 114€/MWh, representando-se como uma tecnologia de produção de energia menos competitiva do que centrais solares em terra e do que centrais de ciclo combinado.
APA, Harvard, Vancouver, ISO, and other styles
30

Lozano, Adolfo. "Analysis of a novel thermoelectric generator in the built environment." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4131.

Full text
Abstract:
This study centered on a novel thermoelectric generator (TEG) integrated into the built environment. Designed by Watts Thermoelectric LLC, the TEG is essentially a novel assembly of thermoelectric modules whose required temperature differential is supplied by hot and cold streams of water flowing through the TEG. Per its recommended operating conditions, the TEG nominally generates 83 Watts of electrical power. In its default configuration in the built environment, solar-thermal energy serves as the TEG’s hot stream source and geothermal energy serves as its cold stream source. Two systems-level, thermodynamic analyses were performed, which were based on the TEG’s upcoming characterization testing, scheduled to occur later in 2011 in Detroit, Michigan. The first analysis considered the TEG coupled with a solar collector system. A numerical model of the coupled system was constructed in order to estimate the system’s annual energetic performance. It was determined numerically that over the course of a sample year, the solar collector system could deliver 39.73 megawatt-hours (MWh) of thermal energy to the TEG. The TEG converted that thermal energy into a net of 266.5 kilowatt-hours of electricity in that year. The second analysis focused on the TEG itself during operation with the purpose of providing a preliminary thermodynamic characterization of the TEG. Using experimental data, this analysis found the TEG’s operating efficiency to be 1.72%. Next, the annual emissions that would be avoided by implementing the zero-emission TEG were considered. The emission factor of Michigan’s electric grid, RFCM, was calculated to be 0.830 tons of carbon dioxide-equivalent (CO2e) per MWh, and with the TEG’s annual energy output, it was concluded that 0.221 tons CO2e would be avoided each year with the TEG. It is important to note that the TEG can be linearly scaled up by including additional modules. Thus, these benefits can be multiplied through the incorporation of more TEG units. Finally, the levelized cost of electricity (LCOE) of the TEG integrated into the built environment with the solar-thermal hot source and passive ground-based cold source was considered. The LCOE of the system was estimated to be approximately $8,404/MWh, which is substantially greater than current generation technologies. Note that this calculation was based on one particular configuration with a particular and narrow set of assumptions, and is not intended to be a general conclusion about TEG systems overall. It was concluded that while solar-thermal energy systems can sustain the TEG, they are capital-intensive and therefore not economically suitable for the TEG given the assumptions of this analysis. In the end, because of the large costs associated with the solar-thermal system, waste heat recovery is proposed as a potentially more cost-effective provider of the TEG’s hot stream source.<br>text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography