Contents
Academic literature on the topic 'Lévy-Prozesse'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lévy-Prozesse.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Lévy-Prozesse"
Kappus, Julia Johanna. "Nonparametric adaptive estimation for discretely observed Lévy processes." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16613.
Full textThis thesis deals with nonparametric estimation methods for discretely observed Lévy processes. A Lévy process X having finite variation on compact sets and finite second moments is observed at low frequency. The jump dynamics is fully described by the finite signed measure my(dx)=x ny(dx). The goal is to estimate, nonparametrically, some linear functional of my. In the first part, kernel estimators are constructed and upper bounds on the corresponding risk are provided. From this, rates of convergence are derived, under regularity assumptions on the Lévy measure. For particular cases, minimax lower bounds are proved. The rates of convergence are thus shown to be minimax optimal. The focus lies on the data driven choice of the smoothing parameter, which is being considered in the second part. Since nonparametric estimation methods for Lévy processes have strong structural similarities with with nonparametric density deconvolution with unknown error density, both fields are discussed in parallel and the concepts are developed in generality, for Lévy processes as well as for density deconvolution. The choice of the bandwidth is realized, using techniques of model selection via penalization. The principle of model selection via penalization usually relies on the fact that the fluctuation of certain stochastic quantities can be controlled by penalizing with a deterministic term. Contrarily to this, the variance is unknown in the setting investigated here and the penalty term is hence itself a stochastic quantity. It is the main concern of this thesis to develop strategies to dealing with the stochastic penalty term. The most important step in this direction will be a modified estimator of the unknown characteristic function in the denominator, which allows to make the pointwise control of this object uniform on the real line. The main technical tools involved in the arguments are concentration inequalities of Talagrand type for empirical processes.
Hollender, Julian. "Lévy-Type Processes under Uncertainty and Related Nonlocal Equations." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-211795.
Full textSöhl, Jakob. "Central limit theorems and confidence sets in the calibration of Lévy models and in deconvolution." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16732.
Full textCentral limit theorems and confidence sets are studied in two different but related nonparametric inverse problems, namely in the calibration of an exponential Lévy model and in the deconvolution model. In the first set-up, an asset is modeled by an exponential of a Lévy process, option prices are observed and the characteristic triplet of the Lévy process is estimated. We show that the estimators are almost surely well-defined. To this end, we prove an upper bound for hitting probabilities of Gaussian random fields and apply this to a Gaussian process related to the estimation method for Lévy models. We prove joint asymptotic normality for estimators of the volatility, the drift, the intensity and for pointwise estimators of the jump density. Based on these results, we construct confidence intervals and sets for the estimators. We show that the confidence intervals perform well in simulations and apply them to option data of the German DAX index. In the deconvolution model, we observe independent, identically distributed random variables with additive errors and we estimate linear functionals of the density of the random variables. We consider deconvolution models with ordinary smooth errors. Then the ill-posedness of the problem is given by the polynomial decay rate with which the characteristic function of the errors decays. We prove a uniform central limit theorem for the estimators of translation classes of linear functionals, which includes the estimation of the distribution function as a special case. Our results hold in situations, for which a square-root-n-rate can be obtained, more precisely, if the Sobolev smoothness of the functionals is larger than the ill-posedness of the problem.
Sennewald, Ken. "Stochastic Control, Optimal Saving, and Job Search in Continuous Time." Doctoral thesis, [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1195054673140-63635.
Full textDe, Oliveira Gomes André. "Large Deviations Studies for Small Noise Limits of Dynamical Systems Perturbed by Lévy Processes." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19118.
Full textThis thesis deals with applications of Large Deviations Theory to different problems of Stochastic Dynamics and Stochastic Analysis concerning Jump Processes. The first problem we address is the first exit time from a fixed bounded domain for a certain class of exponentially light jump diffusions. According to the lightness of the jump measure of the driving process, we derive, when the source of the noise vanishes, the asymptotic behavior of the law and of the expected value of first exit time. In the super-exponential regime the law of the first exit time follows a large deviations scale and in the sub-exponential regime it follows a moderate deviations one. In both regimes the first exit time is comprehended, in the small noise limit, in terms of a deterministic quantity that encodes the minimal energy the jump diffusion needs to spend in order to follow an optimal controlled path that leads to the exit. The second problem that we analyze is the small noise limit of a certain class of coupled forward-backward systems of Stochastic Differential Equations. Associated to these stochastic objects are some nonlinear nonlocal Partial Differential Equations that arise as nonlocal toy-models of Fluid Dynamics. Using a probabilistic approach and the Markov nature of these systems we study the convergence at the level of viscosity solutions and we derive a large deviations principles for the laws of the stochastic processes that are involved.
Trabs, Mathias. "Adaptive and efficient quantile estimation." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014. http://dx.doi.org/10.18452/16998.
Full textThe estimation of quantiles and realated functionals is studied in two inverse problems: the classical deconvolution model and the Lévy model, where a Lévy process is observed and where we aim for the estimation of functionals of the jump measure. From a more abstract perspective we study semiparametric efficiency in the sense of Hájek-Le Cam for functional estimation in regular indirect models. A general convolution theorem is proved which applies to a large class of statistical inverse problems. In particular, we consider the deconvolution model, where we prove that our plug-in estimators of the distribution function and of the quantiles are efficient. In the nonlinear Lévy model based on low-frequent discrete observations of the Lévy process, we deduce an information bound for the estimation of functionals of the jump measure. The strong relationship between the Lévy model and the deconvolution model is given a precise meaning. Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic setup of unknown error distributions is covered. Under minimal and natural conditions we show that the plug-in method is minimax optimal. A data-driven bandwidth choice yields optimal adaptive estimation. The concept of quantiles is generalized to the possibly infinite Lévy measures by considering left and right tail integrals. Based on equidistant discrete observations of the process, we construct a nonparametric estimator of the generalized quantiles and derive minimax convergence rates. As a motivating financial example for inverse problems, we empirically study the calibration of an exponential Lévy model for asset prices. The estimators of the generalized quantiles are adapted to this model. We construct an optimal adaptive quantile estimator and apply the procedure to real data of DAX-options.
Sennewald, Ken. "Stochastic Control, Optimal Saving, and Job Search in Continuous Time." Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A23974.
Full text