Academic literature on the topic 'Lévy-Type Processes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lévy-Type Processes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lévy-Type Processes"

1

Wagner, Vanja. "Censored symmetric Lévy-type processes." Forum Mathematicum 31, no. 6 (2019): 1351–68. http://dx.doi.org/10.1515/forum-2018-0076.

Full text
Abstract:
AbstractWe examine three equivalent constructions of a censored symmetric purely discontinuous Lévy process on an open set D; via the corresponding Dirichlet form, through the Feynman–Kac transform of the Lévy process killed outside of D and from the same killed process by the Ikeda–Nagasawa–Watanabe piecing together procedure. By applying the trace theorem on n-sets for Besov-type spaces of generalized smoothness associated with complete Bernstein functions satisfying certain scaling conditions, we analyze the boundary behavior of the corresponding censored Lévy process and determine conditions under which the process approaches the boundary {\partial D} in finite time. Furthermore, we prove a stronger version of the 3G inequality and its generalized version for Green functions of purely discontinuous Lévy processes on κ-fat open sets. Using this result, we obtain the scale invariant Harnack inequality for the corresponding censored process.
APA, Harvard, Vancouver, ISO, and other styles
2

Sandrić, Nikola. "Ergodicity of Lévy-Type Processes." ESAIM: Probability and Statistics 20 (2016): 154–77. http://dx.doi.org/10.1051/ps/2016009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sandrić, Nikola. "On transience of Lévy-type processes." Stochastics 88, no. 7 (2016): 1012–40. http://dx.doi.org/10.1080/17442508.2016.1178749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jie-Ming. "Stochastic Comparison for Lévy-Type Processes." Journal of Theoretical Probability 26, no. 4 (2011): 997–1019. http://dx.doi.org/10.1007/s10959-011-0394-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krühner, Paul, and Alexander Schnurr. "Time change equations for Lévy-type processes." Stochastic Processes and their Applications 128, no. 3 (2018): 963–78. http://dx.doi.org/10.1016/j.spa.2017.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Asmussen, Søren. "Lévy Processes, Phase-Type Distributions, and Martingales." Stochastic Models 30, no. 4 (2014): 443–68. http://dx.doi.org/10.1080/15326349.2014.958424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dieker, A. B. "Applications of factorization embeddings for Lévy processes." Advances in Applied Probability 38, no. 03 (2006): 768–91. http://dx.doi.org/10.1017/s0001867800001269.

Full text
Abstract:
We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes. First, we find the joint distribution of the supremum and the epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We also find the characteristics of the ladder process. Second, we establish general properties of perturbed risk models, and obtain explicit fluctuation identities in the case that the Lévy process is spectrally positive. Third, we study the tail asymptotics for the supremum of a Lévy process under different assumptions on the tail of the Lévy measure.
APA, Harvard, Vancouver, ISO, and other styles
8

Dieker, A. B. "Applications of factorization embeddings for Lévy processes." Advances in Applied Probability 38, no. 3 (2006): 768–91. http://dx.doi.org/10.1239/aap/1158685001.

Full text
Abstract:
We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes. First, we find the joint distribution of the supremum and the epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We also find the characteristics of the ladder process. Second, we establish general properties of perturbed risk models, and obtain explicit fluctuation identities in the case that the Lévy process is spectrally positive. Third, we study the tail asymptotics for the supremum of a Lévy process under different assumptions on the tail of the Lévy measure.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Zeng-Hu. "Ornstein-Uhlenbeck type processes and branching processes with immigration." Journal of Applied Probability 37, no. 03 (2000): 627–34. http://dx.doi.org/10.1017/s0021900200015862.

Full text
Abstract:
It is shown that an Ornstein-Uhlenbeck type process associated with a spectrally positive Lévy process can be obtained as the fluctuation limits of both discrete state and continuous state branching processes with immigration.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Zeng-Hu. "Ornstein-Uhlenbeck type processes and branching processes with immigration." Journal of Applied Probability 37, no. 3 (2000): 627–34. http://dx.doi.org/10.1239/jap/1014842823.

Full text
Abstract:
It is shown that an Ornstein-Uhlenbeck type process associated with a spectrally positive Lévy process can be obtained as the fluctuation limits of both discrete state and continuous state branching processes with immigration.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lévy-Type Processes"

1

Al-Talibi, Haidar. "Nelson-type Limits for α-Stable Lévy Processes". Licentiate thesis, Linnaeus University, School of Computer Science, Physics and Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-7043.

Full text
Abstract:
<p>Brownian motion has met growing interest in mathematics, physics and particularly in finance since it was introduced in the beginning of the twentieth century. Stochastic processes generalizing Brownian motion have influenced many research fields theoretically and practically. Moreover, along with more refined techniques in measure theory and functional analysis more stochastic processes were constructed and studied. Lévy processes, with Brownian motionas a special case, have been of major interest in the recent decades. In addition, Lévy processes include a number of other important processes as special cases like Poisson processes and subordinators. They are also related to stable processes.</p><p>In this thesis we generalize a result by S. Chandrasekhar [2] and Edward Nelson who gave a detailed proof of this result in his book in 1967 [12]. In Nelson’s first result standard Ornstein-Uhlenbeck processes are studied. Physically this describes free particles performing a random and irregular movement in water caused by collisions with the water molecules. In a further step he introduces a nonlinear drift in the position variable, i.e. he studies the case when these particles are exposed to an external field of force in physical terms.</p><p>In this report, we aim to generalize the result of Edward Nelson to the case of α-stable Lévy processes. In other words we replace the driving noise of a standard Ornstein-Uhlenbeck process by an α-stable Lévy noise and introduce a scaling parameter uniformly in front of all vector fields in the cotangent space, even in front of the noise. This corresponds to time being sent to infinity. With Chandrasekhar’s and Nelson’s choice of the diffusion constant the stationary state of the velocity process (which is approached as time tends to infinity) is the Boltzmann distribution of statistical mechanics.The scaling limits we obtain in the absence and presence of a nonlinear drift term by using the scaling property of the characteristic functions and time change, can be extended to other types of processes rather than α-stable Lévy processes.</p><p>In future, we will consider to generalize this one dimensional result to Euclidean space of arbitrary finite dimension. A challenging task is to consider the geodesic flow on the cotangent bundle of a Riemannian manifold with scaled drift and scaled Lévy noise. Geometrically the Ornstein-Uhlenbeck process is defined on the tangent bundle of the real line and the driving Lévy noise is defined on the cotangent space.</p>
APA, Harvard, Vancouver, ISO, and other styles
2

Hollender, Julian. "Lévy-Type Processes under Uncertainty and Related Nonlocal Equations." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-211795.

Full text
Abstract:
The theoretical study of nonlinear expectations is the focus of attention for applications in a variety of different fields — often with the objective to model systems under incomplete information. Especially in mathematical finance, advances in the theory of sublinear expectations (also referred to as coherent risk measures) lay the theoretical foundation for modern approaches to evaluations under the presence of Knightian uncertainty. In this book, we introduce and study a large class of jump-type processes for sublinear expectations, which can be interpreted as Lévy-type processes under uncertainty in their characteristics. Moreover, we establish an existence and uniqueness theory for related nonlinear, nonlocal Hamilton-Jacobi-Bellman equations with non-dominated jump terms.
APA, Harvard, Vancouver, ISO, and other styles
3

Kühn, Franziska. "Probability and Heat Kernel Estimates for Lévy(-Type) Processes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-214839.

Full text
Abstract:
In this thesis, we present a new existence result for Lévy-type processes. Lévy-type processes behave locally like a Lévy process, but the Lévy triplet may depend on the current position of the process. They can be characterized by their so-called symbol; this is the analogue of the characteristic exponent in the Lévy case. Using a parametrix construction, we prove the existence of Lévy-type processes with a given symbol under weak regularity assumptions on the regularity of the symbol. Applications range from existence results for stable-like processes and mixed processes to uniqueness results for Lévy-driven stochastic differential equations. Moreover, we discuss sufficient conditions for the existence of moments of Lévy-type processes and derive estimates for fractional moments.
APA, Harvard, Vancouver, ISO, and other styles
4

Haugomat, Tristan. "Localisation en espace de la propriété de Feller avec application aux processus de type Lévy." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S046/document.

Full text
Abstract:
Dans cette thèse, nous donnons une localisation en espace de la théorie des processus de Feller. Un premier objectif est d’obtenir des résultats simples et précis sur la convergence de processus de Markov. Un second objectif est d’étudier le lien entre les notions de propriété de Feller, problème de martingales et topologie de Skorokhod. Dans un premier temps nous donnons une version localisée de la topologie de Skorokhod. Nous en étudions les notions de compacité et tension. Nous faisons le lien entre les topologies de Skorokhod localisée et non localisée, grâce à la notion de changement de temps. Dans un second temps, à l’aide de la topologie de Skorokhod localisée et du changement de temps, nous étudions les problèmes de martingales. Nous montrons pour des processus l’équivalence entre, d’une part, être solution d’un problème de martingales bien posé, d’autre part, vérifier une version localisée de la propriété de Feller, et enfin, être markovien et continu en loi par rapport à sa condition initiale. Nous caractérisons la convergence en loi pour les solutions de problèmes de martingale en terme de convergence des opérateurs associés et donnons un résultat similaire pour les approximations à temps discret. Pour finir, nous appliquons la théorie des processus localement fellerien à deux exemples. Nous l’appliquons d’abord au processus de type Lévy et obtenons des résultats de convergence pour des processus à temps discret et continu, notamment des méthodes de simulation et schémas d’Euler. Nous appliquons ensuite cette même théorie aux diffusions unidimensionnelles dans des potentiels, nous obtenons des résultats de convergence de diffusions ou marches aléatoires vers des diffusions singulières. Comme conséquences, nous déduisons la convergence de marches aléatoires en milieux aléatoires vers des diffusions en potentiels aléatoires<br>In this PhD thesis, we give a space localisation for the theory of Feller processes. A first objective is to obtain simple and precise results on the convergence of Markov processes. A second objective is to study the link between the notions of Feller property, martingale problem and Skorokhod topology. First we give a localised version of the Skorokhod topology. We study the notions of compactness and tightness for this topology. We make the connexion between localised and unlocalised Skorokhod topologies, by using the notion of time change. In a second step, using the localised Skorokhod topology and the time change, we study martingale problems. We show the equivalence between, on the one hand, to be solution of a well-posed martingale problem, on the other hand, to satisfy a localised version of the Feller property, and finally, to be a Markov process weakly continuous with respect to the initial condition. We characterise the weak convergence for solutions of martingale problems in terms of convergence of associated operators and give a similar result for discrete time approximations. Finally, we apply the theory of locally Feller process to some examples. We first apply it to the Lévy-type processes and obtain convergence results for discrete and continuous time processes, including simulation methods and Euler’s schemes. We then apply the same theory to one-dimensional diffusions in a potential and we obtain convergence results of diffusions or random walks towards singular diffusions. As a consequences, we deduce the convergence of random walks in random environment towards diffusions in random potential
APA, Harvard, Vancouver, ISO, and other styles
5

Éon, Richard. "Asymptotique des solutions d'équations différentielles de type frottement perturbées par des bruits de Lévy stables." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S024/document.

Full text
Abstract:
Cette thèse porte sur l'étude d'équations différentielles de type frottement, c'est à dire d'équations de type attractive, avec un unique point stable 0, caractérisant la vitesse d'un objet soumis à une force de frottement. La vitesse de cet objet subit des perturbations aléatoires de type Lévy. Dans une première partie, nous nous intéressons aux propriétés fondamentales de ces EDS : existence et unicité de la solution, caractère markovien et ergodique de celle-ci et plus particulièrement le cas des processus de Lévy stable. Dans une deuxième partie, nous étudions la stabilité de la solution de ces EDS lorsque la perturbation est un processus de Lévy stable qui tend vers 0. En effet, nous démontrons l'existence d'un développement limité d'ordre un autour de la solution déterministe pour la vitesse et la position de l'objet. Dans une troisième partie, nous étudions le comportement asymptotique des solutions lorsque la vitesse initiale est nulle et que la perturbation est un processus de Lévy stable symétrique. Nous prouvons dans cette partie que l'accumulation de perturbations entraîne un comportement asymptotique gaussien de la position de l'objet, à condition que l'indice de stabilité du processus de Lévy et la croissance du potentiel soient suffisamment grand. Dans une quatrième partie, nous levons l'hypothèse de symétrie de la perturbation en démontrant le même résultat que dans la troisième partie mais avec une dérive. Pour cela, nous étudions tout d'abord la queue de distribution de la mesure invariante associée à la vitesse de l'objet. Enfin dans une dernière partie, nous nous intéressons au résultat de la troisième partie lorsque la perturbation est la somme d'un mouvement brownien et d'un processus de Lévy purement à sauts. Puis nous commençons l'étude de la dimension deux en traitant le cas où les équations sont découplées mais où les mouvement brownien directeurs sont dépendants<br>This thesis deals with the study of friction type differential equations, in other words, attractive equations, with a unique stable point 0, describing the speed of an object submitted to a frictional force. This object's speed is disturbed by Lévy type random perturbations. In a first part, one is interested in fondamental properties of these SDE: existence and unicity of a solution, Markov and ergodic properties, and more particularly the case of stable Lévy processes.In a second part, one study the stability of the solution of these SDE when the perturbation is an stable Lévy process that tends to 0. In fact, one proves the existence of a Taylor expansion of order one around the deterministic solution for the object's speed and position. In a third part, one study the asymptotic behaviour of the solutions when the initial speed is 0 and the perturbation is a symmetric stable Lévy process. One proves that the amount of perturbations, if the stability's index of the Lévy process and the increasing of the potential are big enough, leads to a gaussian asymptotic behaviour for the object's position.In a forth part, one relaxes the assumption of symmetry of the perturbation by proving the same result as in the third part but with a drift. To do so, one first studies the tail of the invariant measure of the object's speed.Finally, in a last part, one is interested in the same result as in the third part when the perturbation is the sum of the Brownian motion and a pure jump stable Lévy process. Then, one begins the study of the dimension two by considering the case where the equations are separated but where the driving Brownian motions are dependent
APA, Harvard, Vancouver, ISO, and other styles
6

Kühn, Franziska Verfasser], René L. [Akademischer Betreuer] [Gutachter] Schilling, and Alexey [Gutachter] [Kulik. "Probability and Heat Kernel Estimates for Lévy(-Type) Processes / Franziska Kühn ; Gutachter: René L. Schilling, Alexei Kulik ; Betreuer: René L. Schilling." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://d-nb.info/1121499295/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kühn, Franziska [Verfasser], René L. Akademischer Betreuer] [Gutachter] Schilling, and Alexey [Gutachter] [Kulik. "Probability and Heat Kernel Estimates for Lévy(-Type) Processes / Franziska Kühn ; Gutachter: René L. Schilling, Alexei Kulik ; Betreuer: René L. Schilling." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://d-nb.info/1121499295/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kühn, Franziska [Verfasser], René L. [Akademischer Betreuer] Schilling, and Alexey [Gutachter] Kulik. "Probability and Heat Kernel Estimates for Lévy(-Type) Processes / Franziska Kühn ; Gutachter: René L. Schilling, Alexei Kulik ; Betreuer: René L. Schilling." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-214839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hollender, Julian [Verfasser], René L. [Akademischer Betreuer] [Gutachter] Schilling, and Jiang-Lun [Gutachter] Wu. "Lévy-Type Processes under Uncertainty and Related Nonlocal Equations / Julian Hollender ; Gutachter: René L. Schilling, Jiang-Lun Wu ; Betreuer: René L. Schilling." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://d-nb.info/1121474500/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Valdivieso, Serrano Luis Hilmar. "Fractionally integrated processes of Ornstein-Uhlenbeck type." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/97091.

Full text
Abstract:
An estimation methodology to deal with fractionally integrated processes of Ornstein- Uhlenbeck type is proposed. The methodology is based on the continuous Whittle contrast. A simulation study is performed by driving this process with a symmetric CGMY background Lévy process.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Lévy-Type Processes"

1

Khoshnevisan, Davar, and René Schilling. From Lévy-Type Processes to Parabolic SPDEs. Edited by Frederic Utzet and Lluis Quer-Sardanyons. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34120-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khoshnevisan, Davar, Frederic Utzet, Lluis Quer-Sardanyons, and René Schilling. From Lévy-Type Processes to Parabolic SPDEs. Birkhäuser, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lévy-Type Processes"

1

Jacob, Niels, and René L. Schilling. "Lévy-Type Processes and Pseudodifferential Operators." In Lévy Processes. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eberlein, Ernst. "Jump–Type Lévy Processes." In Handbook of Financial Time Series. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71297-8_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kühn, Franziska. "Moments of Lévy-Type Processes." In Lévy Matters VI. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60888-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakhnovich, Lev A. "Triangular Factorization and Cauchy Type Lévy Processes." In Integral Equations with Difference Kernels on Finite Intervals. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16489-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lorig, Matthew, Stefano Pagliarani, and Andrea Pascucci. "Asymptotics for $$d$$ -Dimensional Lévy-Type Processes." In Large Deviations and Asymptotic Methods in Finance. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11605-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kozek, Andrzej. "Exact Slopes for Kolmogorov-Lévy Type Statistics." In Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-010-9913-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sakhnovich, Lev A. "Lévy Processes: Convolution-type Form of the Infinitesimal Generator." In Integral Equations with Difference Kernels on Finite Intervals. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16489-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boyarchenko, Svetlana I., and Sergei Z. Levendorskii. "Option Pricing and Hedging Under Regular Lévy Processes of Exponential Type." In Mathematical Finance. Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8291-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arunachalam, Viswanathan, and Rodrigo Cancino. "Modeling Electricity Spot Price Dynamics by Using Lévy-Type Cox Processes: An Application to Colombian Market." In Springer Proceedings in Mathematics & Statistics. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18239-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ishikawa, Yasushi. "Exponential Type Decrease of the Density for Jump Processes with Singular Lévy Measures in Small Time." In Stochastic Analysis and Related Topics VIII. Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8020-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!