Dissertations / Theses on the topic 'LGD (Loss Given Default)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 42 dissertations / theses for your research on the topic 'LGD (Loss Given Default).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Azevedo, José Henrique Sousa de. "Macroeconomics determinants of loss given default." Master's thesis, Instituto Superior de Economia e Gestão, 2015. http://hdl.handle.net/10400.5/10719.
Full textEsta dissertação modeliza a base de dados Moody's Ultimate Recovery Database, concluindo que o ambiente macroeconómico influencia o loss given default (LGD)e que as taxas de recuperação no crédito concedido são menos susceptíveis a serem influenciadas pelas condicionantes macroeconómicas do que as taxas de recuperação das obrigações. A metodologia econométrica tem por base a regressão OLS. São também discutidas outras metodologias passíveis de serem utilizadas.
This dissertation models Moody's Ultimate Recovery Database to show that general macroeconomic conditions influence loss given default and that loans' recovery rates are less susceptible to macroeconomic conditions than bonds'. Available data was studied with Ordinary Least Squares regressions. Alternative methodologies are also discussed.
Yao, Xiao. "Modelling loss given default of corporate bonds and bank loans." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/26020.
Full textMoura, Telmo Correia de Pina e. "Forecasting loss given default with the nearest neighbor algorithm." Master's thesis, Instituto Superior de Economia e Gestão, 2012. http://hdl.handle.net/10400.5/10314.
Full textNos últimos anos, a previsão do Loss Given Default (LGD) tem sido um dos principais desafios no âmbito da gestão do risco de crédito. Investigadores académicos e profissionais da indústria bancária têm-se dedicado ao estudo deste parâmetro de risco em particular. Apesar de todas as diferentes abordagens já desenvolvidas e publicadas até hoje, a previsão do LGD continua a ser um tema de estudo académico intenso e sobre o qual ainda não existe um "consenso" metodológico na banca. Este trabalho apresenta uma abordagem alternativa para a previsão do LGD baseada na utilização de um simples, mas intuitivo, algoritmo de Machine Learning: o algoritmo nearest neighbor. De forma a avaliar a perfomance desta técnica não paramétrica na previsão do LGD, são utilizadas determinadas métricas de avaliação que permitem a comparação com um modelo paramétrico mais convencional e com a utilização do LGD médio histórico.
In recent years, forecasting Loss Given Default (LGD) has been a major challenge in the field of credit risk management. Practitioners and academic researchers have focused on the study of this particular risk dimension. Despite all different approaches that have been developed and published so far, it remains an area of intense academic study and with lack of consensual solutions in the banking industry. This paper presents an LGD forecasting approach based on a simple and intuitive Machine Learning algorithm: the nearest neighbor algorithm. In order to evaluate the performance of this non parametric technique, some proper evaluation metrics are used to compare it to a more ?classical? parametric model and to the use of historical recovery rates to predict LGD.
Hallström, Richard. "Estimating Loss-Given-Default through Survival Analysis : A quantitative study of Nordea's default portfolio consisting of corporate customers." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122914.
Full textI Sverige måste alla banker rapportera sitt lagstadgade kapital i deras rapporter till marknaden och modellerna för att beräkna detta kapital måste vara godkända av den finansiella myndigheten, Finansinspektionen. Det lagstadgade kapitalet är det kapital som en bank måste hålla som en säkerhet för kreditrisk och den agerar som en buffert om banken skulle förlora oväntade summor pengar i deras utlåningsverksamhet. Loss- Given-Default (LGD) är en av de främsta faktorerna i det lagstadgade kapitalet och kravet på det minimala kapitalet är mycket känsligt för det rapporterade LGD. Workout LGD är baserat på diskonteringen av framtida kassaflöden från kunder som gått i default. Det huvudsakliga problemet med workout LGD är ofullständiga workouts, vilket i sin tur resulterar i två problem för banker när de ska beräkna workout LGD. Banken måste antingen vänta på att workout-perioden ska ta slut, vilket i vissa fall kan ta upp till flera år, eller så får banken exkludera eller göra grova antaganden om dessa ofullständiga workouts i sina beräkningar. I den här studien har idén från Survival analysis (SA) metoder använts för att lösa dessa problem. Den mest använda SA modellen, Cox proportional hazards model (Cox model), har applicerats för att undersöka effekten av kovariat på livslängden hos en monetär enhet. De undersökta kovariaten var Land, Säkrat/Osäkrat, Kollateral-kod, Loan-To-Value, Industri-kod Exposure-At-Default och Multipla-kollateral. Dataurvalet uppdelades först i 80 % träningsurval och 20 % testurval. Den applicerade Cox modellen baserades på träningsurvalet och validerades på testurvalet genom tolkning av Kaplan-Meier överlevnadskurvor för riskgrupperna skapade från prognosindexet (PI). Med de presenterade resultaten kan Nordea beräkna ett förväntat LGD för nya kunder i default, givet informationen i den här studiens undersökta kovariat. Nordea kan också få en klar bild över vilka faktorer som driver ett lågt respektive högt LGD.
Silva, João Flávio Andrade. "Modelos preditivos para LGD." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/104/104131/tde-13112018-084000/.
Full textFinancial institutions willing to use the advanced Internal Ratings Based (IRB) need to develop methods to estimate the LGD (Loss Given Default) risk component. Proposals for PD (Probability of default) modeling have been presented since the 1950s, in contrast, LGDs forecast has received more attention only after the publication of the Basel II Accord. LGD also has a small literature, compared to PD, and there is no efficient method in terms of accuracy and interpretation such as logistic regression for PD. Regression models for LGD play a key role in the risk management of financial institutions, due to their importance this work proposes a methodology to quantify the LGD risk component. Considering the characteristics reported on the distribution of LGD and in the flexible form that the beta distribution may assume, we propose a methodology for estimation of LGD using the zero inflated bimodal beta regression model. We developed the zero inflated bimodal beta distribution, presented some properties, including moments, defined estimators via maximum likelihood and constructed the regression model for this probabilistic model, presented asymptotic confidence intervals and hypothesis test for this model, as well as selection criteria of models, we performed a simulation study to evaluate the performance of the maximum likelihood estimators for the parameters of the zero inflated bimodal beta distribution. For comparison with our proposal we selected the beta regression models and inflated beta regression, which are more usual approaches, and the SVR algorithm, due to the significant superiority reported in other studies.
Cruz, José Eduardo Fidalgo Freire. "Cálculo da Loss Given Default no crédito à habitação com Cadeias de Markov." Master's thesis, Instituto Superior de Economia e Gestão, 2012. http://hdl.handle.net/10400.5/10730.
Full textO Acordo de Basileia II determina, entre outros, o requisito de fundos mínimos que os bancos necessitam de manter, de modo a protegerem-se do risco de crédito. Um dos parâmetros essenciais na avaliação do requisito é a LGD - Loss Given Default, que representa a perda sofrida pela instituição quando os seus clientes entram em incumprimento. O objetivo principal do projeto é desenvolver um modelo e uma metodologia que possibilitem o cálculo deste parâmetro recorrendo a Cadeias de Markov. O estudo incidirá sobre o crédito à habitação, pela sua importância para a maioria dos bancos. Ao longo da exposição será visto que as Cadeias de Markov constituem um instrumento adequado para completar a informação necessária ao cálculo da LGD, cumprindo todas as exigências que o Acordo determina.
Basel II determines, among other things, the minimum capital requirement, which is the amount that banks need to keep in order to protect against credit risk. One of the key parameters for the calculation of the capital requirements is the LGD - Loss Given Default. The objective of this project is to develop a model and a framework to calculate the LGD using Markov Chains. A special attention is given to mortgages due to the importance of this kind of loans to the banking sector. In this work, using Markov Chains, it will be possible to predict the missing information that is required by Basel II to calculate the minimum capital requirements.
Rezende, Gustavo de Magalhães. "Estimativas de LGD em portfólios de crédito simulados: análises comparativas." Universidade Presbiteriana Mackenzie, 2011. http://tede.mackenzie.br/jspui/handle/tede/537.
Full textFundo Mackenzie de Pesquisa
Basel II Accord will allow banks in Brazil to calculate their capital requirements using internal ratings based on the advanced IRB (Internal Rating-Based) approach, depending on their credit risk exposure. The main modeling components that must be estimated are the probability of default (PD), loss given default (LGD) and exposure at default (EAD). The aim of this dissertation is to estimate the parameter LGD using different models found in the literature in order to compare the obtained results. For that, the credit portfolios within this study will be simulated via Monte Carlo simulation, due to the difficulty in getting real losses data.
O acordo de Basileia II no Brasil vai permitir que os bancos utilizem modelos internos, na abordagem IRB avançada (Internal Rating-Based), que sirvam de base para o cálculo dos requisitos mínimos de capital em função do nível de exposição ao risco de crédito. Dentre os principais componentes estimados estão a probabilidade de default (PD probability of default), a perda dado o default (LGD loss given default) e a exposição no default (EAD exposure at default). Esta dissertação tem como objetivo realizar estimativas de LGD utilizando alguns modelos descritos na literatura e comparando os resultados obtidos. Para tanto, os portfólios de crédito do estudo serão simulados através de técnicas de Monte Carlo, dada a escassez de dados de perdas reais.
Brown, Iain Leonard Johnston. "Basel II compliant credit risk modelling : model development for imbalanced credit scoring data sets, loss given default (LGD) and exposure at default (EAD)." Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/341517/.
Full textCastaldini, Christian. "Il mercato NPL: analisi econometrica d'impatto delle operazioni di cessione." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textČabrada, Jiří. "Kreditní rizika z pohledu Basel II." Master's thesis, Vysoká škola ekonomická v Praze, 2007. http://www.nusl.cz/ntk/nusl-5575.
Full textHonal, Martin. "Loss Given Default von Mobilien-Leasingverträgen." Wiesbaden Gabler, 2008. http://d-nb.info/992304717/04.
Full textLopes, Maria Leonor Grossinho Fontinha Jacinto. "Loss given default : a backtesting exercise." Master's thesis, Instituto Superior de Economia e Gestão, 2018. http://hdl.handle.net/10400.5/18107.
Full textAfter January 2018, the new accounting standard IFRS 9 Financial Instruments was mandatory practice for all Financial Institutions. Introducing the new impairment model, which focus on expected credit losses (ECL) instead of incurred losses established previous in IAS 39 Measurement and Recognition. According to the new standard, the risk parameters involved in the computation of the ECL are required to be periodically revised. The Loss Given Default (LGD) is a risk input which represents the loss in case of a financial instrument defaults. Hence, the aim of the present report is to validate the risk input through a back testing exercise, considering statistical tests.
info:eu-repo/semantics/publishedVersion
Matos, Sara Madeira. "Interpretable models of loss given default." Master's thesis, Instituto Superior de Economia e Gestão, 2021. http://hdl.handle.net/10400.5/20981.
Full textA gestão do risco de crédito é uma área em que os reguladores esperam que os bancos adotem modelos de risco transparentes e auditáveis colocando de parte o uso de modelos de black-box apesar destes serem mais precisos. Neste estudo, mostramos que os bancos não precisam de sacrificar a precisão preditiva ao custo da transparência do modelo para estar em conformidade com os requisitos regulatórios. Ilustramos isso mostrando que as previsões de perdas de crédito fornecidas por um modelo black-box podem ser facilmente explicadas em termos dos seus inputs.
Credit risk management is an area where regulators expect banks to have transparent and auditable risk models, which would preclude the use of more accurate black-box models. Furthermore, the opaqueness of these models may hide unknown biases that may lead to unfair lending decisions. In this study, we show that banks do not have to sacrifice predictive accuracy at the cost of model transparency to be compliant with regulatory requirements. We illustrate this by showing that the predictions of credit losses given by a black-box model can be easily explained in terms of their inputs. Because black-box models fit better the data, banks should consider the determinants of credit losses suggested by these models in lending decisions and pricing of credit exposures.
info:eu-repo/semantics/publishedVersion
Dahlin, Fredrik, and Samuel Storkitt. "Estimation of Loss Given Default for Low Default Portfolios." Thesis, KTH, Matematisk statistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145149.
Full textZhang, Jie. "Modelling examples of loss given default and probability of default." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/172581/.
Full textWildenauer, Nicole. "Modellierung der loss rate given default im Kreditrisikomanagement /." Duisburg ; Köln : WiKu-Verl.***5003820, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016568274&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textDe, Moraes Angela Rita Freitas. "Novel information in estimating loss given default in Brazil." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33187.
Full textLeow, Mindy. "Credit risk models for mortgage loan loss given default." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/170515/.
Full textVelka, Elina. "Loss Given Default Estimation with Machine Learning Ensemble Methods." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279846.
Full textDenna uppsats undersöker och jämför tre maskininlärningsmetoder som estimerar förlust vid fallissemang (Loss Given Default, LGD). LGD kan ses som motsatsen till återhämtningsgrad, dvs. andelen av det utstående lånet som långivaren inte skulle återfå ifall kunden skulle fallera. Maskininlärningsmetoder som undersöks i detta arbete är decision trees, random forest och boosted metoder. Alla metoder fungerade väl vid estimering av lån som antingen inte återbetalas, dvs. LGD = 1 (100%), eller av lån som betalas i sin helhet, LGD = 0 (0%). En tydlig minskning i modellernas träffsäkerhet påvisades när modellerna kördes med ett dataset där observationer med LGD = 1 var borttagna. Random forest modeller byggda på ett obalanserat träningsdataset presterade bättre än de övriga modellerna på testset som inkluderade observationer där LGD = 1. Då observationer med LGD = 1 var borttagna visade det sig att random forest modeller byggda på ett balanserat träningsdataset presterade bättre än de övriga modellerna. Boosted modeller visade den svagaste träffsäkerheten av de tre metoderna som blev undersökta i denna studie. Totalt sett visade studien att random forest modeller byggda på ett obalanserat träningsdataset presterade en aning bättre än decision tree modeller, men beräkningstiden (kostnaden) var betydligt längre när random forest modeller kördes. Därför skulle decision tree modeller föredras vid estimering av förlust vid fallissemang.
Betz, Jennifer [Verfasser], and Daniel [Akademischer Betreuer] Rösch. "Resolution of defaulted loan contracts - An empirical analysis of default resolution time and loss given default / Jennifer Betz ; Betreuer: Daniel Rösch." Regensburg : Universitätsbibliothek Regensburg, 2018. http://d-nb.info/1164765604/34.
Full textMacedo, Cristiana Gobbi. "Determinação da perda de crédito por meio de modelos estruturais: aplicação da abordagem de implied market loss given default." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/12/12136/tde-25062014-154725/.
Full textIn an effort to comply with the Basel Agreement requirements, financial institutions have engaged in developing their own measures and processes. Within that context, quantitative models are being developed for organizations seeking an advanced approach. The research-related problem aims to estimate the credit loss parameter, loss given default, in situations where events of default are not observed. Literature in that respect indicates the utilization of structural models in such scenarios: the model proposed by Merton (1974) or its derivations are widely employed in determining the probability of default and loss given default. In this methodology the solution is found in an implied manner through the price of bonds and equities. This work applies the Merton model and verifies the implications of its use in calculating loss given default, risk neutral and implicit, in companies listed on the São Paulo Stock Exchange (Bovespa). The target populations in the period from December 2006 to June 2013 and such data as stock price, number of outstanding shares and debt book value have been collected. The main results found, in a manner very similar to other authors, demonstrate that: (i) the loss given default is greater at moments of financial instability, as observed in 2008, a time at which asset prices showed high volatility, (ii) the maturity, or duration, has a great influence on loss given default: higher the maturity, lower the recovery, and as well (iii) higher the book´s value debt weight on firm value, the lower is the firm´s value volatility.
Töws, Eugen [Verfasser], Thomas [Akademischer Betreuer] Hartmann-Wendels, Dieter [Akademischer Betreuer] Hess, and Heinrich [Akademischer Betreuer] Schradin. "Advanced Methods for Loss Given Default Estimation / Eugen Töws. Gutachter: Thomas Hartmann-Wendels ; Dieter Hess ; Heinrich Schradin." Köln : Universitäts- und Stadtbibliothek Köln, 2016. http://d-nb.info/1082030473/34.
Full textKrüger, Steffen Verfasser], and Daniel [Akademischer Betreuer] [Rösch. "Advanced Dependency Modeling in Credit Risk - Lessons for Loss Given Default, Lifetime Expected Loss and Bank Capital Requirements / Steffen Krüger ; Betreuer: Daniel Rösch." Regensburg : Universitätsbibliothek Regensburg, 2017. http://d-nb.info/1139892398/34.
Full textLjung, Carolina, and Maria Svedberg. "Estimation of Loss Given Default Distributions for Non-Performing Loans Using Zero-and-One Inflated Beta Regression Type Models." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273593.
Full textDetta examensarbete undersöker tre olika metoder för att estimera förlusten vid fallissemang för icke-presterande konsumentlån. Detta som ett bidrag till en kreditrisksmodell i enlighet med bestämmelserna i Baselregelverken, som bland annat reglerar kapitalkraven för europeiska finansiella institut. Inledningsvis tillämpas multipel linjär regression, därefter implementeras två versioner av utvidgad betaregression, med och utan bayesiansk inferens. Resultatet bekräftar att modellering data för förlust givet fallissemang är utmanande, men visar även att den utvidgade betaregressionen utan bayesiansk inferens är bättre de andra modellerna. Det ska dock tilläggas att alla modeller visade svårigheter att estimera lån med låg risk, medan tillförlitligheten hos lån med hög risk, vilka generellt sett medför större förluster, var högre. Vidare rekommenderas det för framtida forskning att inkludera makroekonomiska variabler i modellerna för att fånga ekonomiska nedgångar samt att implementera beslutsträd, exempelvis genom applicering av maskininlärning.
Schneider, Paul, Leopold Sögner, and Tanja Veza. "The Economic Role of Jumps and Recovery Rates in the Market for Corporate Default Risk." Cambridge University Press, 2010. http://dx.doi.org/10.1017/S0022109010000554.
Full textMiller, Patrick Michel [Verfasser], Thomas [Gutachter] Hartmann-Wendels, Dieter [Gutachter] Hess, and Heinrich R. [Gutachter] Schradin. "Modeling and Estimating the Loss Given Default of Leasing Contracts / Patrick Michel Miller ; Gutachter: Thomas Hartmann-Wendels, Dieter Hess, Heinrich R. Schradin." Köln : Universitäts- und Stadtbibliothek Köln, 2017. http://d-nb.info/1124587748/34.
Full textAraújo, Evaristo Donato. "A taxa de recuperação de créditos ruins em bancos comerciais privados brasileiros." reponame:Repositório Institucional do FGV, 2004. http://hdl.handle.net/10438/2457.
Full textCredit risk comes from the possibility of the debtor not paying its debt at the maturity date, and the promised amount. When the debtor doesn’t pay in full its debt, we say he or she is in default. In this case, the creditor gets a loss. However, the loss could be reduced if the debtor pays part of his or her debt. The measurement of a debtor’s probability of default has been the subject of studies for decades. However, the measurement of how much one can receive from a defaulted credit – the recovery rate – has been given attention only recently. And, most of the time, this measure has been calculated for huge companies in United States financial markets, only. We have defined recovery rate based on financial reports of Brazilian commercial banks, and tracked the path of this variable pari passu to default rate, defined from the same reports also. We established a theoretical framework, and made hypothesis on how such variables as default rates and other credit quality indicators, economic level indicators, nominal and real interest rates, and capital markets indicators could explain variations on the recovery rates we have defined. We gathered information from 46 Brazilian private commercial banks, semiannually, bracing the period between June of 1994 and December 2002. These institutions were segmented by their share on the amount of credit of the private banking industry in Brazil and by the origin of its capital. Statistical models were run on explanatory variables based on original data and on variables obtained from principal components analysis. The models were able to explain most of the variation observed on the recovery rate we have defined, for the segments we have studied. The best models have shown that variations on the recovery rate could be explained by default rates and other indicators of credit quality, economic activity indicators and capital markets indicators.
O risco de crédito decorre da possibilidade de o devedor não honrar sua dívida no montante e na data aprazada. Quando o devedor não liquida sua dívida nas condições contratadas, diz-se que se torna inadimplente. Neste caso, o credor incorre em prejuízo. A perda, entretanto, pode ser reduzida se o cliente pagar parcialmente o que deve. A mensuração da probabilidade de um devedor inadimplir tem sido objeto de estudos há décadas. Entretanto, a quantificação do quanto o credor recebe em caso de inadimplência – a taxa de recuperação –só recentemente tem recebido atenção da academia. E, na maioria das vezes, esta quantificação tem-se limitado aos títulos de grandes empresas, negociados no mercado de capitais dos Estados Unidos da América. Neste trabalho, definiu-se uma taxa de recuperação baseada em informações contábeis de instituições bancárias brasileiras e analisou-se o comportamento desta variável pari passu à taxa de inadimplência, também definida a partir de dados contábeis. Estabeleceu-se um arcabouço teórico capaz de explicar de que forma variáveis como a taxa de inadimplência e outros indicadores de qualidade das carteiras de crédito, indicadores da atividade econômica, níveis de juros nominais e reais e indicadores do mercado de capitais, poderiam explicar as variações na taxa de recuperação das carteiras de crédito. Foram obtidas informações de um conjunto de 46 instituições bancárias privadas brasileiras, semestralmente, para o período compreendido entre junho de 1994 e dezembro de 2002. Essas instituições foram segmentadas pela representatividade de suas carteiras de crédito no volume total de créditos das instituições comerciais brasileiras e por origem de seu capital acionário. Elaboraram-se modelos estatísticos baseados em regressões multivariadas tanto de variáveis originais como de variáveis obtidas através de análise de componentes principais, que se mostraram capazes de explicar parte considerável das variações observadas na taxa de recuperação no conceito contábil, para os vários segmentos de instituições estudados. Mostraram-se como variáveis explicativas relevantes, nos melhores modelos, indicadores de inadimplência, indicadores da atividade econômica e indicadores do mercado de capitais.
Lindgren, Jonathan. "Modeling credit risk for an SME loan portfolio: An Error Correction Model approach." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-136176.
Full textSince the global financial crisis of 2008, several big regulations have been implemented to assure that banks follow sound risk management. Among these are the Basel II Accords that implement capital requirements for credit risk. The core measures of credit risk evaluation are the Probability of Default and Loss Given Default. The Basel II Advanced Internal-Based-Rating Approach allows banks to model these measures for individual portfolios and make their own evaluations. This thesis, in compliance with the Advanced Internal-Based-rating approach, evaluates the use of an Error Correction Model when modeling the Probability of Default. A model proven to be strong in stress testing. Furthermore, a Loss Given Default function is implemented that ties Probability of Default and Loss Given Default to systematic risk. The Error Correction Model is implemented on an SME portfolio from one of the "big four" banks in Sweden. The model is evaluated and stress tested with the European Banking Authority's 2016 stress test scenario and analyzed, with promising results.
Hlavatá, Ivana. "Modelování parametru LGD pomocí redukovaných modelů." Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-312542.
Full textSeidler, Jakub. "Implied market loss given default." Master's thesis, 2008. http://www.nusl.cz/ntk/nusl-294972.
Full textLin, Hsiu-Chuan, and 林秀娟. "Modeling Loss Given Default of Corporate Loan." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/59628343447116972521.
Full text國立清華大學
科技管理研究所
94
The purpose of this article is to construct a loss given default (LGD) estimation model which can discriminate LGD from different characteristics of obligation and collateral, and to offer a reference model for bank that will adopt Advance Internal Rating Based Approach to determine capital requirement of credit risk. This article is based on structured model to construct three different kinds of LGD estimation model which including the loan has no collateral, collateral value is constant and collateral value is stochastic. Specific to the model that concern collateral value is stochastic can take into account the correlation between collateral value and firm’s value, the volatility of collateral value and the volatility of assets value. In empirical analysis we find that the correlation between collateral value and firm’s assets value has significant effect on LGD. Under the same PD, higher correlation between collateral value and firm’s assets value resulting higher LGD. The liquidity of collateral is also an important factor that effect LGD. If the liquidity of collateral is low, it is more difficult to sell collateral to third party and will increase LGD.
Jhou, Ming-Yi, and 周明儀. "The impact of institutional factors on loss given default." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/97uxrz.
Full text元智大學
財務金融暨會計碩士班(財務金融學程)
105
The thesis studies the impact of institutional factors on loss given default (LGD), which discusses the effect on origin of legal system, stability of judicial regimes, degree of corruption, adoption of International Financial Reporting Standards (IFRS), financial structure of countries, and political economy. The sample period covers 46 countries from 1983 to 2015. I run the ordinary least square regression individually in accordance with adoption of civil law; rating of judicial impartiality; perception of corruption; utilizing of International Financial Reporting Standards (IFRS); OCED membership (financial structure guarantee); and percentage of country-level output of state-owned enterprise. I find results that civil law countries have higher LGD relative to the common law countries; countries which have more efficient judicial system keep lower LGD. Countries with high corruption degree lead to the higher LGD. Countries which adopt the IFRS obtain the lower LGD. OECD members have relatively stable financial structure enjoy the lower LGD. Countries with less government intervention cause lower LGD.
YEH, CHIA-CHI, and 葉家齊. "Predicting the Loss Given Default During the Economic Recession." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/nnk5p3.
Full text國立臺北大學
統計學系
107
Loss Given Default is one of the important variables which measures credit losses and estimate capital economic in IRB approach. In order to obtain a more conservative estimation of economic capital, the Basel II requires banks to use estimates of loss given default during the economic downturn.However, it'll be too late for banks to estimate loss given default when the economy is in a downturn. They must estimated the loss given default by converting the estimation of the loss given default during usual period. Compared with probability of default, Basel II does not specify a conversion function for the loss given default, which is also the goal of many scholars. The conversion function of loss given default during economic downturn is usually obtained by deriving the distribution of loss given default and calculating the conditional loss given default given an extreme quantile (indicating a poor economic situation). We believe that the distribution of loss given default is not necessarily a normal distribution.Our goal is to acquird a reasonable estimate of the loss given default by using different distribution hypotheses of loss given default, and comparing the performance of the transfer function under different distribution hypotheses.
Tseng, Wei-Ming, and 曾維明. "A Case Study of Loss Given Default Business Loans." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/32129543329826778990.
Full textTsai, Wei-jen, and 蔡偉仁. "A Study on Loss Given Default for Corporate Loan." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/q382jd.
Full text東吳大學
國際經營與貿易學系
96
This study is extracted from a local commercial bank that has sold non-performing loans to the asset management company by choosing 135 cases of corporate loans from 1992 to 2002 as samples. In this article the main direction of this research is to discuss on the influence of the variable factors with LGD (loss given default) and the construction of a LGD model, so as to reduce the non-performing loans of a bank and to improve its competitiveness. First of all, we use the multiple linear regression analysis to forecast the variable factors and to discuss which one can influence the LGD. The experimental evidence showed that the enterprise period of service, loan rate, mortgage, house or stock take for collateral, the economical growth rate and the unemployment rate and the remaining seven variables, have a remarkable influence on the LGD. Secondly, we attempt to construct a LGD estimation model which can discriminate the LGD based on different characteristics of the economy. After this demonstration, its calculation and the prime number only differ by 3.78%, whereby the error is not big. Therefore this model is useful for the LGD examination when the lender applies for loan from financial institution.
Lin, Ping-chi, and 林炳棋. "An Empirical Study on the Loss Given Default for Mortgage Loan." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/90982004327382382355.
Full text朝陽科技大學
財務金融系碩士班
95
Risk exists in any place in the future all the time and the definition of risk also differs from person to person. The management of risk is the management of future uncertainty. In the field of banking and finance management, the risk that a financial institution faces can be regarded as its uncertainty of the return of portfolio.To build up the safety and stability of the financial system, BCBS of BIS (the Bank for International Settlements) issued “The International Regulations of Capital Measurement and Capital Standards” in July 1988, which regulated the ratio of the capital of a bank accounting for risk property should be higher than 8%. In Jan. 1996 it issued a revised version, called “International Convergence of Capital Measurement and Capital Standards”, which is shortened “Basel II.” Among loan business in domestic financial institutions, mortgage is one of the major businesses. The prediction of PD (Probability pf Default) and LGD (Loss Given Default) is thus a very important issue.When calculating RAROC (Risk Adjusted Return on Capital) or Capital Adequacy of a bank, LGD is one of the major variables. Taking a look at the domestic and international researches, we can find that many of them focus on the estimation of PD (Probability of Default), while few of them focus on LGD (Loss Given Default). This study adopts Logistic Regression Models, discussing the factors that influence the loss given default for mortgage of financial institutions. The data of LGD came from a domestic financial institution when its counterpart defaulted. It is expected that this study can help us understand the factors that influence the loss given default for mortgage, and analyze the location of collateral that provided by the mortgagor, LTV (Loan to Value), and the affecting degree caused by the loan and the loss given default of financial institutions. The finding is that when financial institutions lend money on mortgage, they have to prepare more loss reserve to meet the demand for capital adequacy since they are faced with higher risk of loss given default in terms of the non-urban location of collateral, high LTV ratio, and higher loan.
LIN, JING XIU, and 林敬修. "Granularity Adjustment Method in Credit Risk with Stochastic Loss Given Default." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/95370620332725707016.
Full text東吳大學
財務工程與精算數學系
98
In Basel II 2004, Basle Committee on Banking Supervision (BCBS) proposes financial institutions to establish assessment model internally. Since the distribution of percentage of loss of investment portfolio is hard to be estimated and complicated, it is the important topic to select an effective model which describes the loss of investment portfolio and how to calculate credit Value-at-Risk (VaR). Both of default model and random loss given default (LGD) are related to macroecnomic systematic factor in this assignment. By using Granularity Adjustment (GA) to calculate the credit VaR. When the lower default probability of obligor's exposure at default increase, and the other parameter invariable, thought generally credit VaR will reduce, Emmer and Tasche (2005) will be selected the example which credit VaR will decrease then increase; but when supposition LGD is stochastic whether also has the similar result.
Cing, Fong-Sian, and 馮獻慶. "Using a Two-stage Model to Estimate the Loss Given Default Distribution." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/77591969479318458784.
Full text國立東華大學
應用數學系
105
We propose a new two-stage model to estimate the loss given default (LGD) distribution. The first-stage model is the logistic regression model used to estimate probabilities of LGD equal to 0 and larger 0, respectively. The second-stage model is the right-tail extended beta model applied to generate the distribution of LGD between (0,1) and probability of LGD equal to 1. To implement the newly proposed two-stage model, we collect a sample of 4962 defaulted debts from Moody’s Default and Recovery Database. The empirical results show that the newly proposed two-stage model can generate the accurate LGD distribution estimate. Thus, it is useful for studying the LGD distribution.
HSIEH, YI-LING, and 謝易陵. "A Study Factor on Loss Given Default of Corporate Loan: Application of AHP Method." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/uk7kc6.
Full text東吳大學
國際經營與貿易學系
104
Abstract The expected loss estimation and credit risk management are emphasized in both Basel III and IFRS 9. This paper hopes to find out factors resulting in “higher loss given default for corporate loans” and “higher recovery rate of collateral after disposition” when importing the expected loss model before the full implementation of IFRS 9 in 2018 to be used as the reference for banking enterprises to measure and estimate the loss given default for corporate loans. It uses Modified Delphi Method and Analytic Hierarchy Process (AHP) and designs questionnaires in 2 stages; its subjects are 15 corporate loan credit checking staff and 15 debt collectors with experience in banking practice. The results show among factors resulting in “higher loss given default for corporate loans”, it can be observed from the empirical analysis that the experts interviewed selected “Operator and Management” as the most important dimension, followed by “Finance” and “Industry”; the top 2 indexes emphasized by them are “overdue payment of the operator’s principal debt or guaranteed debt in the most recent year” and “the accountant issues reports of adverse opinions or disclaimer of opinion in the financial statement in the most recent quarter”. In terms of factors resulting in “higher recovery rate of collateral after disposition”, all the experts interviewed sort the recovery rates of collaterals of different properties and the empirical results is: cash assets (excluding equity financial commodity) >real estate>guarantee of credit guarantee agency >other assets (including equity financial commodity); according to mortgage sequence setting of collaterals, the recovery rates are sorted: the first secured debt >the second secured debt. Keywords:Corporate loan、LGD、Recovery rate、IFRS 9、Basel、 Delphi Method、AHP
TING, CHIA-QI, and 丁家麒. "A Study on Loss Given Default of Small and Medium - sized Enterprises in Taiwan." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/m79trv.
Full text東吳大學
國際經營與貿易學系
105
Government requires banks and financial institutions in line with the implementation of Basel II in 2007, requiring banks should have internal risk management mechanism, banks and financial institutions to increase the risk sensitivity. Therefore, banks and financial institutions to develop an effective method to forecast LGD business loans to bank lending as a decision-making basis and reference, and use this method to reduce credit risk and reduce the bank's losses. This study suggests that, when the audit of financial institutions lending to SMEs, should pay attention to the study discussed in factors, as the basis for approval of the loan, reducing the risk of default , increase shareholders' equity.
Fernandes, João Eduardo Dias. "Corporate credit risk modeling." Doctoral thesis, 2006. http://hdl.handle.net/10071/1401.
Full textA modelização do risco de crédito de empréstimos a empresas sem emissões cotadas em mercados financeiros é limitada, apesar do peso elevado deste segmento nas carteiras de crédito dos bancos. O objectivo deste estudo é contribuir para este ramo de literatura ao aplicar técnicas de medição dos dois principais parâmetros de risco de crédito a uma amostra aleatória extraída da base de dados de um banco europeu. A dissertação é composta por dois capítulos, o primeiro trata a modelização da probabilidade de incumprimento (PD), e o segundo a modelização da perda em caso de incumprimento (LGD). O primeiro capítulo começa por apresentar e comparar alternativas para a medição do credit score dos clientes, incluindo modelo de equações sectoriais múltiplas e outro com amostra ponderada. Em seguida é abordada a problemática de agrupar scores individuais em classes de risco com PDs associadas. Para tal, duas alternativas são propostas, a primeira usa técnicas de clustering, enquanto que a segunda baseia-se no mapeamento entre as classificações internas e uma escala de referência externa. No final do primeiro capítulo, e usando as estimativas de PD anteriormente calculadas, determinam-se os requisitos de capital regulamentar à luz do novo acordo de capital de Basileia, em contraste com os requisitos previstos no acordo actual. No segundo capítulo comparam-se duas alternativas para a modelização do LGD. Os modelos são estimados sob uma amostra aleatória de 7 anos, considerando-se como variáveis explicativas características dos empréstimos, garantias e clientes. Ambas as alternativas têm em consideração o facto da variável dependente ser uma fracção e de ter uma distribuição não normal. A primeira alternativa é baseada na transformação Beta da variável dependente, enquanto que a segunda é baseada em Generalized Linear Models.
ISCTE
Seidler, Jakub. "Credit Risk in the Macroprudential Framework: Three Essays." Doctoral thesis, 2012. http://www.nusl.cz/ntk/nusl-305913.
Full text