Journal articles on the topic 'Li‐ion capacitors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Li‐ion capacitors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ineneji, Collins, Olusola Bamisile, and Mehmet Kuşaf. "Super-Capacitors as an Alternative for Renewable Energy Unstable Supply." Academic Perspective Procedia 1, no. 1 (2018): 11–20. http://dx.doi.org/10.33793/acperpro.01.01.3.
Full textCao, W., and J. P. Zheng. "Li-Ion Capacitors Using Carbon-Carbon Electrodes." ECS Transactions 45, no. 29 (2013): 165–72. http://dx.doi.org/10.1149/04529.0165ecst.
Full textMorita, Kenji, and Bun Tsuchiya. "Dynamic Behavior of Li in Solid-State Li-Ion Batteries Studied using MeV Ion Beam Analysis Techniques." Journal of Energy and Power Technology 03, no. 02 (2021): 1. http://dx.doi.org/10.21926/jept.2102029.
Full textLi, Tianqi, Majid Beidaghi, Xu Xiao, et al. "Ethanol reduced molybdenum trioxide for Li-ion capacitors." Nano Energy 26 (August 2016): 100–107. http://dx.doi.org/10.1016/j.nanoen.2016.05.004.
Full textCao, W., and J. P. Zheng. "Study of Cycle Performance of Li-Ion Capacitors." ECS Transactions 53, no. 31 (2013): 15–25. http://dx.doi.org/10.1149/05331.0015ecst.
Full textAravindan, Vanchiappan, Joe Gnanaraj, Yun-Sung Lee, and Srinivasan Madhavi. "Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors." Chemical Reviews 114, no. 23 (2014): 11619–35. http://dx.doi.org/10.1021/cr5000915.
Full textAnothumakkool, Bihag, Simon Wiemers‐Meyer, Dominique Guyomard, Martin Winter, Thierry Brousse, and Joel Gaubicher. "Cascade‐Type Prelithiation Approach for Li‐Ion Capacitors." Advanced Energy Materials 9, no. 27 (2019): 1900078. http://dx.doi.org/10.1002/aenm.201900078.
Full textHuang, Yuxi, Rui Ding, Qilei Xu, et al. "A conversion and pseudocapacitance-featuring cost-effective perovskite fluoride KCuF3 for advanced lithium-ion capacitors and lithium-dual-ion batteries." Dalton Transactions 50, no. 25 (2021): 8671–75. http://dx.doi.org/10.1039/d1dt00904d.
Full textZhang, Sheng S. "A cost-effective approach for practically viable Li-ion capacitors by using Li2S as an in situ Li-ion source material." Journal of Materials Chemistry A 5, no. 27 (2017): 14286–93. http://dx.doi.org/10.1039/c7ta03923a.
Full textLiu, Chaofeng, Changkun Zhang, Huanqiao Song, et al. "Mesocrystal MnO cubes as anode for Li-ion capacitors." Nano Energy 22 (April 2016): 290–300. http://dx.doi.org/10.1016/j.nanoen.2016.02.035.
Full textZhang, Yiyong, Mingsheng Xu, Huaicong Yan, et al. "AC/Se composite cathode for asymmetric Li-ion capacitors." Materials Today Energy 16 (June 2020): 100374. http://dx.doi.org/10.1016/j.mtener.2019.100374.
Full textKato, Keiko, Marco-Tulio F. Rodrigues, Ganguli Babu, and Pulickel M. Ajayan. "Revealing anion chemistry above 3V in Li-ion capacitors." Electrochimica Acta 324 (November 2019): 134871. http://dx.doi.org/10.1016/j.electacta.2019.134871.
Full textLim, Young-Geun, Duho Kim, Jin-Myoung Lim, et al. "Anti-fluorite Li6CoO4 as an alternative lithium source for lithium ion capacitors: an experimental and first principles study." Journal of Materials Chemistry A 3, no. 23 (2015): 12377–85. http://dx.doi.org/10.1039/c5ta00297d.
Full textYan, Dong, Jian Zhang, Dongbin Xiong, et al. "Boosting chem-insertion and phys-adsorption in S/N co-doped porous carbon nanospheres for high-performance symmetric Li-ion capacitors." Journal of Materials Chemistry A 8, no. 23 (2020): 11529–37. http://dx.doi.org/10.1039/d0ta02264k.
Full textWang, Peiyu, Rutao Wang, Junwei Lang, Xu Zhang, Zhenkun Chen, and Xingbin Yan. "Porous niobium nitride as a capacitive anode material for advanced Li-ion hybrid capacitors with superior cycling stability." Journal of Materials Chemistry A 4, no. 25 (2016): 9760–66. http://dx.doi.org/10.1039/c6ta02971j.
Full textXu, Qilei, Rui Ding, Wei Shi, et al. "Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries." Journal of Materials Chemistry A 7, no. 14 (2019): 8315–26. http://dx.doi.org/10.1039/c9ta00493a.
Full textPendashteh, Afshin, Brahim Orayech, Jon Ajuria, María Jáuregui, and Damien Saurel. "Exploring Vinyl Polymers as Soft Carbon Precursors for M-Ion (M = Na, Li) Batteries and Hybrid Capacitors." Energies 13, no. 16 (2020): 4189. http://dx.doi.org/10.3390/en13164189.
Full textHan, Chao, Xinyi Wang, Jian Peng, et al. "Recent Progress on Two-Dimensional Carbon Materials for Emerging Post-Lithium (Na+, K+, Zn2+) Hybrid Supercapacitors." Polymers 13, no. 13 (2021): 2137. http://dx.doi.org/10.3390/polym13132137.
Full textSun, Jinfeng, Lingzhi Guo, Xuan Sun, et al. "Conductive Co-based metal–organic framework nanowires: a competitive high-rate anode towards advanced Li-ion capacitors." Journal of Materials Chemistry A 7, no. 43 (2019): 24788–91. http://dx.doi.org/10.1039/c9ta08788e.
Full textSun, Xianzhong, Xiong Zhang, Kai Wang, Nansheng Xu, and Yanwei Ma. "Temperature effect on electrochemical performances of Li-ion hybrid capacitors." Journal of Solid State Electrochemistry 19, no. 8 (2015): 2501–6. http://dx.doi.org/10.1007/s10008-015-2876-x.
Full textDong, Shengyang, Hongsen Li, Junjun Wang, Xiaogang Zhang, and Xiulei Ji. "Improved flexible Li-ion hybrid capacitors: Techniques for superior stability." Nano Research 10, no. 12 (2017): 4448–56. http://dx.doi.org/10.1007/s12274-017-1753-6.
Full textYin, Fuxing, Peng Yang, Wenjing Yuan, et al. "Flexible MoSe2/MXene films for Li/Na-ion hybrid capacitors." Journal of Power Sources 488 (March 2021): 229452. http://dx.doi.org/10.1016/j.jpowsour.2021.229452.
Full textHuang, Yongfa, Rui Ding, Danfeng Ying, et al. "Engineering doping-vacancy double defects and insights into the conversion mechanisms of an Mn–O–F ultrafine nanowire anode for enhanced Li/Na-ion storage and hybrid capacitors." Nanoscale Advances 1, no. 12 (2019): 4669–78. http://dx.doi.org/10.1039/c9na00521h.
Full textChen, Zhen-Kun, Jun-Wei Lang, Ling-Yang Liu, and Ling-Bin Kong. "Preparation of a NbN/graphene nanocomposite by solution impregnation and its application in high-performance Li-ion hybrid capacitors." RSC Advances 7, no. 32 (2017): 19967–75. http://dx.doi.org/10.1039/c7ra01671a.
Full textQue, Lanfang, Zhenbo Wang, Fuda Yu, and Daming Gu. "3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors." Journal of Materials Chemistry A 4, no. 22 (2016): 8716–23. http://dx.doi.org/10.1039/c6ta02413k.
Full textChen, Zhijie, Zhiwei Li, Wenjie He, et al. "Nb3O7F mesocrystals: orientation formation and application in lithium ion capacitors." CrystEngComm 23, no. 35 (2021): 6012–22. http://dx.doi.org/10.1039/d1ce00600b.
Full textZhao, Yuemei, Yongpeng Cui, Jing Shi, et al. "Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors." Journal of Materials Chemistry A 5, no. 29 (2017): 15243–52. http://dx.doi.org/10.1039/c7ta04154c.
Full textLai, Samson Yuxiu, Carmen Cavallo, Muhammad E. Abdelhamid, Fengliu Lou, and Alexey Y. Koposov. "Advanced and Emerging Negative Electrodes for Li-Ion Capacitors: Pragmatism vs. Performance." Energies 14, no. 11 (2021): 3010. http://dx.doi.org/10.3390/en14113010.
Full textChaturvedi, Apoorva, Peng Hu, Christian Kloc, Yun-Sung Lee, Vanchiappan Aravindan, and Srinivasan Madhavi. "High energy Li-ion capacitors using two-dimensional TiSe0.6S1.4 as insertion host." Journal of Materials Chemistry A 5, no. 37 (2017): 19819–25. http://dx.doi.org/10.1039/c7ta04470d.
Full textBöckenfeld, N., R. S. Kühnel, S. Passerini, M. Winter, and A. Balducci. "Composite LiFePO4/AC high rate performance electrodes for Li-ion capacitors." Journal of Power Sources 196, no. 8 (2011): 4136–42. http://dx.doi.org/10.1016/j.jpowsour.2010.11.042.
Full textWalkowiak, M., K. Wasinski, P. Polrolniczak, et al. "Graphene and Graphene Composites in Electrochemical Capacitors and Li-Ion Batteries." ECS Transactions 70, no. 1 (2015): 27–36. http://dx.doi.org/10.1149/07001.0027ecst.
Full textAphirakaramwong, Chalita, Nutthaphon Phattharasupakun, and Montree Sawangphruk. "Advanced 18650 Li-Ion Capacitors of Lithium Titanate and Carbon Materials." ECS Meeting Abstracts MA2020-01, no. 5 (2020): 603. http://dx.doi.org/10.1149/ma2020-015603mtgabs.
Full textCai, Peng, Kangyu Zou, Guoqiang Zou, Hongshuai Hou, and Xiaobo Ji. "Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance." Nanoscale 12, no. 6 (2020): 3677–85. http://dx.doi.org/10.1039/c9nr10339b.
Full textChaturvedi, Apoorva, Peng Hu, Vanchiappan Aravindan, Christian Kloc, and Srinivasan Madhavi. "Unveiling two-dimensional TiS2 as an insertion host for the construction of high energy Li-ion capacitors." Journal of Materials Chemistry A 5, no. 19 (2017): 9177–81. http://dx.doi.org/10.1039/c7ta01594a.
Full textGuo, Zhonglu, Jian Zhou, Chen Si, and Zhimei Sun. "Flexible two-dimensional Tin+1Cn(n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories." Physical Chemistry Chemical Physics 17, no. 23 (2015): 15348–54. http://dx.doi.org/10.1039/c5cp00775e.
Full textZheng, Yulong, Huanlei Wang, Shijiao Sun, et al. "Sustainable nitrogen-doped carbon electrodes for use in high-performance supercapacitors and Li-ion capacitors." Sustainable Energy & Fuels 4, no. 4 (2020): 1789–800. http://dx.doi.org/10.1039/c9se01064e.
Full textYan, J., W. J. Cao, and J. P. Zheng. "Constructing High Energy and Power Densities Li-Ion Capacitors Using Li Thin Film for Pre-Lithiation." Journal of The Electrochemical Society 164, no. 9 (2017): A2164—A2170. http://dx.doi.org/10.1149/2.1701709jes.
Full textDivya, M. L., Subramanian Natarajan, Yun-Sung Lee, and Vanchiappan Aravindan. "Achieving high-energy dual carbon Li-ion capacitors with unique low- and high-temperature performance from spent Li-ion batteries." Journal of Materials Chemistry A 8, no. 9 (2020): 4950–59. http://dx.doi.org/10.1039/c9ta13913c.
Full textMaurya, Dheeraj K., Balakrishnan Balan, Vignesh Murugadoss, Chao Yan, and Subramania Angaiah. "A fast Li-ion conducting Li7.1La3Sr0.05Zr1.95O12 embedded electrospun PVDF-HFP nanohybrid membrane electrolyte for all-solid-state Li-ion capacitors." Materials Today Communications 25 (December 2020): 101497. http://dx.doi.org/10.1016/j.mtcomm.2020.101497.
Full textGhimbeu, Camelia Matei, Céline Decaux, Patrice Brender, et al. "Influence of Graphite Characteristics on the Electrochemical Performance in Alkylcarbonate LiTFSI Electrolyte for Li-Ion Capacitors and Li-Ion Batteries." Journal of The Electrochemical Society 160, no. 10 (2013): A1907—A1915. http://dx.doi.org/10.1149/2.101310jes.
Full textZhang, Kaiqiang, Tae Hyung Lee, Mohammad A. Khalilzadeh, et al. "Rendering Redox Reactions of Cathodes in Li-Ion Capacitors Enabled by Lanthanides." ACS Omega 5, no. 3 (2020): 1634–39. http://dx.doi.org/10.1021/acsomega.9b03699.
Full textAphirakaramwong, Chalita, and Montree Sawangphruk. "Advanced Hybrid 18650 Li-Ion Capacitors of Lithium Titanate (LTO)/Activated Carbon." ECS Transactions 97, no. 7 (2020): 291–99. http://dx.doi.org/10.1149/09707.0291ecst.
Full textWang, Shouzhi, Lili Li, Weidong He, et al. "Oxygen Vacancy Modulation of Bimetallic Oxynitride Anodes toward Advanced Li‐Ion Capacitors." Advanced Functional Materials 30, no. 27 (2020): 2000350. http://dx.doi.org/10.1002/adfm.202000350.
Full textLi, Ling, Caihong Liu, and Leon Shaw. "Capacitance Enhancement of Activated Carbon through Mechanical Activation for Li-Ion Capacitors." ECS Transactions 75, no. 24 (2017): 21–29. http://dx.doi.org/10.1149/07524.0021ecst.
Full textLiu, Bin, Lingzhi Zhu, Enshan Han, and Han Xu. "High Voltage Li-Ion Capacitors in a Fluoro-Ether Based Electrolyte System." Journal of Electronic Materials 47, no. 9 (2018): 5118–21. http://dx.doi.org/10.1007/s11664-018-6451-y.
Full textSolarajan, Arun Kumar, Vignesh Murugadoss, and Subramania Angaiah. "Montmorillonite embedded electrospun PVdF–HFP nanocomposite membrane electrolyte for Li-ion capacitors." Applied Materials Today 5 (December 2016): 33–40. http://dx.doi.org/10.1016/j.apmt.2016.09.002.
Full textHuang, Xiaokai, Wenyang Zhou, Xinwei Chen, Chunhai Jiang, and Zhimin Zou. "High performance Li-ion hybrid capacitors with micro-sized Nb14W3O44 as anode." Electrochimica Acta 368 (February 2021): 137613. http://dx.doi.org/10.1016/j.electacta.2020.137613.
Full textLiu, Weicui, Jingge Ju, Nanping Deng, et al. "Designing inorganic-organic nanofibrous composite membrane for advanced safe Li-ion capacitors." Electrochimica Acta 337 (March 2020): 135821. http://dx.doi.org/10.1016/j.electacta.2020.135821.
Full textGuo, Zhonglu, Linggang Zhu, Jian Zhou, and Zhimei Sun. "Microscopic origin of MXenes derived from layered MAX phases." RSC Advances 5, no. 32 (2015): 25403–8. http://dx.doi.org/10.1039/c4ra17304j.
Full textFaria, João, José Pombo, Maria Calado, and Sílvio Mariano. "Power Management Control Strategy Based on Artificial Neural Networks for Standalone PV Applications with a Hybrid Energy Storage System." Energies 12, no. 5 (2019): 902. http://dx.doi.org/10.3390/en12050902.
Full text