Academic literature on the topic 'Li-ion conductors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Li-ion conductors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Li-ion conductors"

1

Sugai, Hiroyuki, Masao Sataka, Satoru Okayasu, Shin Ichi Ichikawa, Katsuhisa Nishio, Shinichi Mitsuoka, Takamitsu Nakanoya, et al. "Diffusion of 8Li Short-Lived Radiotracer in Li Ionic Conductors of NaTl-Type Intermetallic Compounds." Defect and Diffusion Forum 273-276 (February 2008): 667–72. http://dx.doi.org/10.4028/www.scientific.net/ddf.273-276.667.

Full text
Abstract:
Non-destructive and on-line Li diffusion experiments in Li ionic conductors are conducted using the short-lived !-emitting radiotracer of 8Li. The radiotracers produced as an energetic and pulsed ion beam from TRIAC (Tokai Radioactive Ion Accelerator Complex) are implanted into a structural defect mediated Li ionic conductor of NaTl-type intermetallic compounds ("-LiGa and "-LiIn). The experimental time spectra of the yields of !-particles are compared with simulated results and Li diffusion coefficients in the intermetallic compounds are extracted with an accuracy of ±10%. The diffusion coefficients obtained for "-LiGa with Li content of 43-54 at.% are discussed in terms of the interaction between Li-ion and the structural defects in the specimen, compared with the cases of "-LiAl and "-LiIn. The nonlinear Li-content dependency of Li diffusion coefficients for "-LiGa suggests that the Li diffusion with the Li-deficient region is obstructed by the defect complex composed of vacancies at the Li sites.
APA, Harvard, Vancouver, ISO, and other styles
2

Fang, Hong, Shuo Wang, Junyi Liu, Qiang Sun, and Puru Jena. "Superhalogen-based lithium superionic conductors." Journal of Materials Chemistry A 5, no. 26 (2017): 13373–81. http://dx.doi.org/10.1039/c7ta01648d.

Full text
Abstract:
Molecular dynamics simulations show Li-ion diffusion in the newly invented antiperovskite Li3OBH4. The blue trajectories show how the Li+ ions run through the lattice of vibrational oxygen (red). The white trajectories show the fast rotational motion of the BH4 superhalogen ions.
APA, Harvard, Vancouver, ISO, and other styles
3

Knauth, Philippe. "Inorganic solid Li ion conductors: An overview." Solid State Ionics 180, no. 14-16 (June 25, 2009): 911–16. http://dx.doi.org/10.1016/j.ssi.2009.03.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meesala, Yedukondalu, Anirudha Jena, Ho Chang, and Ru-Shi Liu. "Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries." ACS Energy Letters 2, no. 12 (November 8, 2017): 2734–51. http://dx.doi.org/10.1021/acsenergylett.7b00849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Hai Feng, Tong Jiang Peng, Hong Juan Sun, and Qiang Wei Xie. "Humidity Sensing Characteristics of Montmorillonite Ion Conductors." Advanced Materials Research 178 (December 2010): 344–49. http://dx.doi.org/10.4028/www.scientific.net/amr.178.344.

Full text
Abstract:
. In order to exploit a kind of low cost and environment-friendly humidity sensing materials, a series of Li-modified montmorillonite ion conductors were prepared using the montmorillonite form Jimusaer in Xinjiang Province of China. The montmorillonite humidity sensing elements were made by the thick film technique on mica substrates. Then the structures of the samples were investigated by X-ray diffraction (XRD) and the humidity sensing characteristics of the elements were tested by an equipment of the resistance testing. The results indicate that the resistances of the montmorillonite humidity elements all decrease with the increase of the system humidity. But there is a great discrepancy between the resistances of Na- montmorillonite humidity element when humidity adsorption and desorption. It was found that Li-modification montmorillonite ion conductors behave well as a humidity sensing material in 30~90% RH (relative humidity). The suitable experimental parameters of montmorillonite Li-modifying under ~ 80°Care obtained.
APA, Harvard, Vancouver, ISO, and other styles
6

Kahle, Leonid, Aris Marcolongo, and Nicola Marzari. "High-throughput computational screening for solid-state Li-ion conductors." Energy & Environmental Science 13, no. 3 (2020): 928–48. http://dx.doi.org/10.1039/c9ee02457c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Liangzhu, and Anil V. Virkar. "Sodium, Silver and Lithium-Ion Conducting β″-Alumina + YSZ Composites, Ionic Conductivity and Stability." Crystals 11, no. 3 (March 16, 2021): 293. http://dx.doi.org/10.3390/cryst11030293.

Full text
Abstract:
Na-β″-alumina (Na2O.~6Al2O3) is known to be an excellent sodium ion conductor in battery and sensor applications. In this study we report fabrication of Na- β″-alumina + YSZ dual phase composite to mitigate moisture and CO2 corrosion that otherwise can lead to degradation in pure Na-β″-alumina conductor. Subsequently, we heat-treated the samples in molten AgNO3 and LiNO3 to respectively form Ag-β″-alumina + YSZ and Li-β″-alumina + YSZ to investigate their potential applications in silver- and lithium-ion solid state batteries. Ion exchange fronts were captured via SEM and EDS techniques. Their ionic conductivities were measured using electrochemical impedance spectroscopy. Both ion exchange rates and ionic conductivities of these composite ionic conductors were firstly reported here and measured as a function of ion exchange time and temperature.
APA, Harvard, Vancouver, ISO, and other styles
8

Muy, Sokseiha, John C. Bachman, Livia Giordano, Hao-Hsun Chang, Douglas L. Abernathy, Dipanshu Bansal, Olivier Delaire, et al. "Tuning mobility and stability of lithium ion conductors based on lattice dynamics." Energy & Environmental Science 11, no. 4 (2018): 850–59. http://dx.doi.org/10.1039/c7ee03364h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Hongjie, Yuran Yu, Zhuo Wang, and Guosheng Shao. "A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl hali-chalcogenides." Journal of Materials Chemistry A 7, no. 10 (2019): 5239–47. http://dx.doi.org/10.1039/c8ta11151k.

Full text
Abstract:
Even though ultra-fast Li+ ion conductors based on sulfides such as LGPS and Li6PS5Cl have been developed in recent years, rather limited advancement has been made towards developing all-solid-state lithium ion batteries due to serious interface-related problems.
APA, Harvard, Vancouver, ISO, and other styles
10

Sugantha, M. "Ionic conductivity of Li+ ion conductors Li2M3+M4+P3O12." Solid State Ionics 95, no. 3-4 (March 1, 1997): 201–5. http://dx.doi.org/10.1016/s0167-2738(96)00565-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Li-ion conductors"

1

Cascallana-Matias, Irene. "Lightweight metal halide and hydride fast Li ion conductors." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7609/.

Full text
Abstract:
This work was motivated by the extensive research on lithium solid state materials, which have attracted increasing interest for potential applications in hydrogen storage and/or lithium ion batteries due to their extraordinary properties. In this thesis, LiBH4-derived materials, LiInBr4 and complex phases based on lithium ammonia borane with potential use as solid state electrolytes were successfully synthesised and characterised.
APA, Harvard, Vancouver, ISO, and other styles
2

Volgmann, K., B. Kresse, A. F. Privalov, F. Fujara, and P. Heitjans. "7Li Field-Cycling NMR as Powerful Tool for Investigating Li Ion Conductors." Diffusion fundamentals 21 (2014) 25, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saha, Sujoy. "Exploration of ionic conductors and Li-rich sulfides for all-solid-state batteries." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS041.pdf.

Full text
Abstract:
Les besoins croissants en stockage de l’énergie exigent une amélioration continue des batteries lithium-ion. Le mécanisme de redox anionique qui permet d’augmenter la densité d’énergie des électrodes positives mais est associé à divers inconvénients (hystérésis et décroissance de tension, cinétique lente, etc.) qui restent à résoudre. De plus, la sécurité des batteries lithium-ion peut être améliorée en concevant des batteries tout-solide. Dans cette thèse, nous nous sommes d'abord concentrés sur le développement de nouveaux électrolytes solides à base d'oxydes pour des applications dans les batteries tout-solide. Nous avons exploré l’influence du désordre structural sur conductivité ionique des électrolytes solides et montré comment il était possible d’augmenter la conductivité en stabilisant à température ambiante les phases désordonnées présentes à haute température. Ensuite, nous avons conçu des électrodes à base de sulfures riches en Li présentant du rédox anionique, qui en outre présentent une excellente réversibilité. Ainsi, les matériaux d'électrode nouvellement conçus ouvrent une direction possible pour atténuer les problèmes liés au rédox anionique. Enfin, nous avons utilisé les sulfures comme électrode positive dans des batteries tout-solide avec des électrolytes solides à base de sulfures; ces systèmes montrent une excellente cyclabilité, soulignant ainsi l’importance de la compatibilité interfaciale dans les batteries tout-solide
Growing needs for energy storage applications require continuous improvement of the lithium ion batteries (LIB). The anionic redox chemistry has emerged recently as a new paradigm to design high-energy positive electrodes of LIBs, however with some issues (i.e., voltage hysteresis and fading, sluggish kinetics, etc.) that remained to be solved. In addition, the safety of the LIBs can be improved by designing all-solid-state batteries (ASSB). In this thesis, we first focused on the development of new oxide-based solid electrolytes (SE) for applications in ASSBs. We explored the influence of disorder on the ionic conductivity of SEs and demonstrated how to increase the conductivity by stabilizing disordered high-temperature phases. Furthermore, we designed Li-rich layered sulfide electrodes that undergo anionic sulfur redox, with excellent reversibility. Thus, the newly designed electrode materials show a possible direction to mitigate the issues related to anionic redox. Lastly, we used the Li-rich sulfides as positive electrode in ASSB with sulfide-based SEs that demonstrate excellent cyclability, thereby highlighting the importance of interfacial compatibility in ASSBs
APA, Harvard, Vancouver, ISO, and other styles
4

Abramova, Alla. "Elaboration par chimie douce, mise en forme et propriétés électriques de conducteurs ioniques nanostructurés." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1025/document.

Full text
Abstract:
Le but de ce travail de thèse, effectué dans le cadre du programme Européen IRSES « Nanolicom », était d’étudier l’influence de la nanostructuration sur les propriétés de transport de deux matériaux conducteurs par les ions lithium, la pérovskite LLTO (Li0.3La0.57TiO3) et le nasicon LATPO (Li1.3Al0.3Ti1.7(PO4)3).Une première partie importante de cette thèse a été consacrée à l’exploration et au développement de méthodes de synthèse par chimie douce plus favorables à la préparation de poudres nanométriques : la voie sol-gel, la voie des complexes polymérisables, la synthèse hydro-solvothermale et la réalisation de microémulsions. Les matériaux obtenusont ensuite été caractérisés par diffraction des rayons X, analyses thermiques et microscopies électroniques.La mise en forme des échantillons ainsi que leur densification ont également fait l’objet d’une étude approfondie. En effet, la détermination des propriétés de transport des matériaux nécessite l’utilisation de céramiques denses mais il est difficile de conserver le caractère nanostructuré des poudres lors de l’étape de frittage. Finalement, les mesures de conductivitésioniques ont été réalisées par spectroscopie d’impédance. L’ensemble des résultats obtenus a ensuite été comparé à ce qui a déjà été observé et reporté dans la littérature pour les composés microstructurés de même formulation
The aim of this thesis, which has been carried out within the European program « Nanolicom », was to study the influence of the nanostructuration on the transport properties of two lithium ionic conductors, the perovskite LLTO (Li0.3La0.57TiO3) and the nasicon LATPO (Li1.3Al0.3Ti1.7(PO4)3).The first part of this thesis is devoted to the exploration and to the optimization of the best soft chemistry route in order to get nanometric powders: sol-gel route, hydro-solvothermal synthesis, reversed microemulsion method and complex polymerizable Pechini method. The obtained materials were characterized by X-ray diffraction, thermal analysis andelectronic microscopy. Shaping and sintering of the samples were also thoroughly studied. Indeed, the determination of transport properties of the materials requires the use of dense ceramics but it is difficult to preserve the nanostructured character of the powders during the sintering step. Finally, the ionic conductivity measurements were carried out by compleximpedance spectroscopy. All results were then compared to what has been observed and reported in the literature for microstructured compounds of the same formulation
APA, Harvard, Vancouver, ISO, and other styles
5

Ogihara, Hideki [Verfasser], and M. J. [Akademischer Betreuer] Hoffmann. "Lithium Titanate Ceramic System as Electronic and Li-ion Mixed Conductors for Cathode Matrix in Lithium-Sulfur Battery / Hideki Ogihara. Betreuer: M. J. Hoffmann." Karlsruhe : KIT-Bibliothek, 2012. http://d-nb.info/1025887476/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wagner, Reinhard, Daniel Rettenwander, Maria Maier, Walter Schmidt, Julia Langer, Martin Wilkening, and Georg Amthauer. "Synthesis of Coarse-grained Garnet-type Li-ion Conductor Li7-3x(Al/Ga)xLa3Zr2O12 and its Li-ion Dynamics." Diffusion fundamentals 21 (2014) 9, S.1-2, 2014. https://ul.qucosa.de/id/qucosa%3A32401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leclere, Mélody. "Synthèse de (poly)électrolytes pour accumulateur Li-ion à haute densité d'énergie." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI001/document.

Full text
Abstract:
Les travaux de thèse présentés dans ce manuscrit portent sur le développement nouveaux électrolytes sans recours aux solvants conventionnels inflammables afin de répondre à la problématique de sécurité des batteries. La première partie de ce travail vise à développer des électrolytes gélifiés à partir de liquide ionique phosphonium. Une étude est réalisée sur la compatibilité entre l'électrolyte et le polymère hôte époxy/amine ainsi que de l'influence du LI sur la polymérisation du réseau. Les propriétés thermiques, viscoélastiques et de transport ionique des gels sont discutées. Parmi les électrolytes gélifiés obtenus, le gel contenant l'électrolyte (1 M LiTFSI + LI [P66614][TFSI]) a montré des propriétés électrochimiques intéressantes. Un système gélifié Li|LFP a été mis en œuvre et une bonne stabilité en cyclage à 100 °C a été obtenue. La deuxième partie de ce travail consiste au développement de nouveaux électrolytes mésomorphes favorisant un transport d’ions lithium par saut. Un composé anionique a été synthétisé à partir d’une réaction époxy/amine entre le 4-amino-1-naphtalènesulfonate de lithium et un diglycidylether aliphatique. Différentes techniques de caractérisation ont été utilisées afin d’établir un lien structure/propriétés. Les résultats ont permis de mettre en évidence une organisation supramoléculaire lamellaire permettant d’obtenir des canaux de conduction d’ions lithium. Les mesures de transport ionique ont permis de mettre en évidence un transport d'ions lithium suivant une loi d'Arrhenius (indépendant du squelette moléculaire) ce qui est la preuve d'un mécanisme de transport d'ions lithium par saut. Les premiers tests électrochimiques ont révélé une bonne stabilité de ces électrolytes vis à vis du lithium et un transport d’ions lithium réversible dans une cellule symétrique Li|Li. A l'issue de ces travaux, les perspectives sont discutées afin d'améliorer les performances de ces électrolytes
The thesis work presented in this manuscript focuses on the development of new electrolytes without the use of flammable conventional solvents to improve the security problem batteries. The first part of this work is the preparation of gelled electrolytes from phosphonium ionic liquid. A study is performed on the compatibility between the electrolyte and the polymer host epoxy / amine as well as the influence of the polymerization LI on the network. The thermal properties, and ionic transport viscoelastic gels are discussed. Among the obtained gelled electrolyte, the gel containing the electrolyte (1 M LiTFSI + LI [P66614] [TFSI]) showed interesting electrochemical properties. A gelled system Li | LFP has been implemented and good cycling stability at 100 ° C was obtained. The second part of this work is the development of new liquid crystal electrolytes promotes transport of lithium ions with hopping mechanism. An anionic compound was synthesized from reaction of an epoxy / amine from lithium 4-amino-1-naphthalenesulfonate and an aliphatic diglycidyl ether. Various characterization technical were used to establish a link structure / properties. The results allowed to show a lamellar supramolecular organization to obtain lithium ion conduction channels. The ion transport measurement helped to highlight a transport of lithium ions following an Arrhenius law (independent of the molecular backbone) which is evidence of a transport mechanism of lithium ions with hopping mechanism. The first electrochemical tests showed good stability of these electrolytes with lithium electrode and a reversible lithium ion transport in a symmetrical cell Li | Li. Following this work, the prospects are discussed to improve the performance of these electrolytes
APA, Harvard, Vancouver, ISO, and other styles
8

Sen, Sudeshna. "A Few Case Studies of Polymer Conductors for Lithium-based Batteries." Thesis, 2016. http://hdl.handle.net/2005/3019.

Full text
Abstract:
The present thesis demonstrates and discusses polymeric ion and mixed ion-electron conductors for rechargeable batteries based on lithium viz. lithium-ion and lithium-sulphur batteries. The proposed polymer ion conductors in the thesis are discussed primarily as potential alternatives to conventional liquid and solid-crystalline electrolytes in lithium-ion batteries. These discussions are part of Chapters 2-4. On the other hand, the polymer based mixed ion-electron conductor is demonstrated as a novel electrode for lithium-Sulphur battery in Chapter 5. Possibility of application of polymer ion conductors is discussed in the context of Li-S battery in Chapter 6. A distinct correlation between the physical properties and electrochemical performance of the proposed conductors is highlighted in detail in this thesis. Systematic investigation of the ion transport mechanism in the polymeric ion conductors has been carried out using various spectroscopic techniques at different time and length scales. Such detailed investigations demonstrate the key structural and physical parameters for design of alternative polymer conductors for rechargeable batteries. Though the thesis discusses the various polymeric conductors in the context of lithium-based batteries, it is strongly felt that the design strategies are equally likely to be beneficial for different battery chemistries as well as for other electrochemical generation and storage devices. A brief discussion of the contents and highlights of the individual chapters are described below: The thesis comprises of six Chapters. Chapter 1 briefly reviews the important developments and materials of lithium-based batteries, with specific focus on Li-ion and Li-S batteries. It starts with discussions on different types of liquid, solid crystalline and solid-like electrolytes. Their materials characteristics, advantages and disadvantages are discussed in the context of secondary batteries such as lithium-ion and lithium-sulphur batteries. As prospective alternative electrolytes polymer based soft matter electrolytes are discussed in detail. Special emphasis is given to the recent developments in polymer electrolytes and their ion conduction mechanism, which are central themes to this thesis. The importance of investigation of charge transport, typically ion, on electrochemical processes is also briefly discussed in Chapter 1. A brief discussion about the characteristics, materials and non-trivialities of the electrochemical storage process in Li-S battery is also reviewed. Chapter 2A demonstrates a binary polymer physical network based gel (PN-x) electrolyte, comprising of an ionic liquid confined inside a binary polymer system for electrochemical devices such as secondary batteries. The synthesis, physical property and electrochemical performances are studied as a function of content of one of the polymers in this Chapter. A physical network of two polymers with different functional groups leads to multiple interesting consequences. The polymer physical network characteristics determine all physical properties including electrochemical property of the ionic liquid integrated PN based GPE. The conductivities of the proposed gel are nearly an order in magnitude higher than the unconfined ionic liquid electrolyte and displays good dimensional stability and electrochemical performance in a separator-free battery configuration. The ac-impedance spectroscopy, steady shear viscosity measurement, dynamic rheology are employed to study physical properties of the proposed gel polymer electrolyte. Chapter 2B discusses the detailed investigations of the ion transport mechanism of the gel polymer electrolyte, as discussed in Chapter 2A. Ion conduction mechanism is investigated in the light of ion diffusion and solvent dynamics of the entrapped ionic liquid inside the polymer. The studies reveal a heavy influence of network characteristics on the ion conduction mechanism. The influence of solvent dynamics on the ion transport is drastically altered by polymer physical network. Consequently, a drastic change in the ion mobility and nature of predominant charge carrier is observed in the polymer physical network based gel electrolyte. A clear transformation from dual ion conductivity to a predominantly anion conductivity is observed on going from single polymer to a dual polymer network. The spectroscopic tools such as pulsed field gradient nuclear magnetic resonance (PFG–NMR), Brillouin light scattering spectroscopy, ac-impedance spectroscopy, FT-Raman and FTIR spectroscopy were used to elucidate the ion transport mechanism in the Chapter. Chapter 3 demonstrates a simple design strategy of gel polymer electrolyte comprising of a lithium salt (lithium bis(trifluoromethanesulfonyl) imide, LiTFSI) solvated by two plastic crystalline solvents, one a solid (succinonitrile, abbreviated as SN) and another a (room temperature) ionic liquid (1-butyl-1-methyl-pyrrolidinium bis(trifluoromethane sulfonyl) imide, (abbreviated as IL) confined inside a linear network of poly(methyl methacrylate) (PMMA). The concentration of the IL component determines the physical properties of the unconfined electrolyte and when confined inside the polymer network in gel polymer electrolyte. Intrinsic dynamics of one plastic crystal influences the conduction mechanism of gel polymer electrolytes. The enhanced disordering in the plastic phase of succinonitrile by IL doping alters both the local ion environment and viscosity. The proposed plastic crystal electrolytes show predominantly anion conduction (tTFSI ≈ 0.5) however, lithium transference number (tLi ≈ 0.2) is nearly an order higher than the ionic liquid electrolyte (IL-LiTFSI) (tLi ≈ 0.02-0.06), discussed in Chapter 2. The gel polymer electrolyte displayed high mechanical compliability, stable Li-electrode | electrolyte interface, low rate of Al corrosion and stable cyclability. The promising electrochemical performance further justifies simple strategy of employing mixed physical state plasticizers to tune the physical properties of polymer electrolytes requisite for application in rechargeable batteries. Chapter 4A proposes a novel liquid dendrimer–based single ion conducting liquid electrolyte as potential alternative to conventional molecular liquid solvent–salt solutions and conventional solid polymer electrolytes for rechargeable batteries, sensors and actuators. The physical properties are investigated as a function of peripheral functionalities in the first generation poly(propyl ether imine) (G1-PETIM)–lithium salt complexes. The change in peripheral group simultaneously affects the effective physical properties viz. viscosity, ionic conductivity, ion diffusion coefficients, transference numbers and also the electrochemical response. The specific change from ester (–COOR) to cyano (–CN) terminated peripheral group resulted in a remarkable switch over from a high cation (tLi+ = 0.9 for –COOR) to a high anion (tPF6- = 0.8 for –CN) transference number. Chapter 4B presents an analysis of the frequency dependent ionic conductivity of single ion dendrimer conductors by using time temperature scaling principles (TTSPs) and dielectric modeling of the electrode polarization. The TTSP provides information on the salt dissociation and number density of mobile charges and hence provides direct insights into the ion conduction mechanism. Summerfield and Baranovskii–Cordes scaling laws, which are well known TTSPs, have been applied to analyze the ion conductivity. The electrode polarization, which quantifies the number density of mobile charges and ionic mobility, is studied using Macdonald-Coelho model of electrode polarization. The combination of these two theoretical investigations of the experimental data emanating from one technique i.e. ac– impedance spectroscopy, predicts independently the contributions of the effect of mobile ion charges and ionic mobility to ion conduction mechanism. In Chapter 5 focus shifts from polymer ion conductors to polymer mixed ion-electron conductor. The polymer mixed ion-electron conductor is demonstrated as a novel electrode material for Li-S battery. A simple strategy to overcome the challenges towards practical realization of a stable high performance Li–S battery is discussed. A soft mixed conducting polymeric network is utilized to configure sulphur nanoparticle. The soft matter network provides efficient and distinct pathways for lithium and electron conduction simultaneously. A lithiated polyethylene glycol (PEG) based surfactant tethered on ultra-small sulphur nanoparticles and wrapped up with polyaniline (PAni) (abbreviated as S-MIEC) is demonstrated here as an exceptional cathode for Li–S batteries. The S-MIEC is characterized by several methods: powder-X-ray diffraction (PXRD), thermo gravimetric analysis (TGA), fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), ac-impedance spectroscopy and dc current-voltage measurements are performed to evaluate conductivity of S-MIEC cathode. Electrochemical studies such as cyclic voltammetry, galvanostatic charge-discharge cycling, galvanostatic intermittent titration (GITT) are performed to demonstrate feasibility of S-MIEC in the Li–S battery performance. Chapter 6 provides a brief summary of the work carried out as part of this thesis and also demonstrates the future perspective of the present work. Potential of the polymer physical network based gel polymer electrolytes, which are discussed in Chapter 2A-B for lithium-ion batteries, are demonstrated in Li-S battery. The proposed polymer physical network confines higher order lithium polysulfides (typically Li2S8) dissolved in tetraethylene glycol dimethyl ether (TEGDME) based electrolyte (TEGDME-1M LiTFSI). The three dimensional polymer network is proposed to be formed by physical blending of the poly(acrylonitrile) (PAN) with the copolymer of AN and poly(ethylene glycol) methyl ether methacrylate (PEGMA), [ P(AN–co–PEGMA)]. We extend here the similar synthetic approaches as described in Chapter 2A. The approach proposed and demonstrated in this concluding Chapter is expected to mitigate some of the major issues of Li-S chemistry. The proposed Li2S8 confined gel electrolyte exhibits moderately high values of ionic conductivity, 2 × 10-3 Ω-1cm-1 and shows a stable capacity of 350 mAhg-1 over 30 days in a separator free Li-S battery.
APA, Harvard, Vancouver, ISO, and other styles
9

"A New Class of Solid State, Single-ion Conductors (H+ and Li+): Silicon-based Plastic Crystals." Doctoral diss., 2016. http://hdl.handle.net/2286/R.I.40721.

Full text
Abstract:
abstract: Plastic crystals as a class are of much interest in applications as solid state electrolytes for electrochemical energy conversion devices. A subclass exhibit very high protonic conductivity and its members have been investigated as possible fuel cell electrolytes, as first demonstrated by Haile’s group in 2001 with CsHSO4. To date these have been inorganic compounds with tetrahedral oxyanions carrying one or more protons, charge-balanced by large alkali cations. Above the rotator phase transition, the HXO4- anions re-orient at a rate dependent on temperature while the centers of mass remain ordered. The transition is accompanied by a conductivity "jump" (as much as four orders of magnitude, to ~ 10 mScm-1 in the now-classic case of CsHSO4) due to mobile protons. These superprotonic plastic crystals bring a “true solid state” alternative to polymer electrolytes, operating at mild temperatures (150-200ºC) without the requirement of humidification. This work describes a new class of solid acids based on silicon, which are of general interest. Its members have extraordinary conductivities, as high as 21.5 mS/cm at room temperature, orders of magnitude above any previous reported case. Three fuel cells are demonstrated, delivering current densities as high as 225 mA/cm2 at short-circuit at 130ºC in one example and 640 mA/cm2 at 87ºC in another. The new compounds are insoluble in water, and their remarkably high conductivities over a wide temperature range allow for lower temperature operations, thus reducing the risk of hydrogen sulfide formation and dehydration reactions. Additionally, plastic crystals have highly advantageous properties that permit their application as solid state electrolytes in lithium batteries. So far only doped materials have been presented. This work presents for the first time non-doped plastic crystals in which the lithium ions are integral part of the structure, as a solid state electrolyte. The new electrolytes have conductivities of 3 to 10 mS/cm at room temperature, and in one example maintain a highly conductive state at temperatures as low as -30oC. The malleability of the materials and single ion conducting properties make these materials highly interesting candidates as a novel class of solid state lithium conductors.
Dissertation/Thesis
Doctoral Dissertation Chemistry 2016
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Li-ion conductors"

1

Flottman, Spencer, Hunter J. Frost, Mark Altwerger, Seiichiro Higashiya, Devendra K. Sadana, and Harry Efstathiadis. "Fabrication process validation and investigations of lithium-ionic conductors for all-solid Li-ion batteries." In 2018 IEEE Nanotechnology Symposium (ANTS). IEEE, 2018. http://dx.doi.org/10.1109/nanotech.2018.8653570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Lingling, Xue Li, Siwei Wang, Kevin Gregory Romito, and Kevin Huang. "Synthesis of Mixed Oxide-Ion and Carbonate-Ion Conductors Supported by a Prefabricated Porous Solid Oxide Matrix." In ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54076.

Full text
Abstract:
A novel two-step approach is used to fabricate a two-phase mixed oxide-ion and carbonate-ion conductor (MOCC) that has been recently developed for intermediate temperature solid oxide fuel cells (IT-SOFCs) and CO2 separation membranes. In this study, a samarium doped ceria (SDC) is selected as an example to demonstrate the prefabrication of porous matrix by the “sacrificial template” methodology with NiO as the template material. NiO has been reduced into elemental Ni in the composite, and then removed by dissolving into a nitric acid. It was demonstrated by XRD, EDS and weight changes. The microstructure of the SDC matrix characterized with an SEM imaging reveals a uniform distribution of homogeneous micro-pores across the solid-oxide matrix. The strong porous solid-oxide matrix is prefabricated at high temperature, into which a molten carbonate phase is subsequently infiltrated. A Li-Na-carbonate-impregnated MOCC supported by a 41.8% porous SDC matrix shows an effective ionic conductivity of 0.43 S/cm at 650 °C.
APA, Harvard, Vancouver, ISO, and other styles
3

Guler, Mehmet Oguz, Mirac Alaf, Deniz Gultekin, Hatem Akbulut, and Ahmet Alp. "The Effect of Pressure on the Microstructural Behavior on SnO2 Thin Films Deposited by RF Sputtering." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47071.

Full text
Abstract:
Tin oxide has multiple technological applications including Li-ion batteries, gas sensors, optoelectronic devices, transparent conductors and solar cells. In this study tin dioxide (SnO2) thin films were deposited on glass substrates by RF sputtering process in the oxygen (O2) and argon (Ar) plasma medium. The deposition of the thin SnO2 films was carried out by RF sputtering from SnO2 targets. Before deposition the system was evacuated to 10−4 torr vacuum level and backfilled with Ar. The deposition of the nano structured thin SnO2 films have been performed at different gas pressures. The deposition of the SnO2 was both carried out at different pure argon gas pressures and argon/oxygen mediums with varying oxygen partial pressures. The effect of argon and argon/oxygen partial gas pressures on the grain structure and film thickness were analyzed in the resultant thin films. The deposited thin films both on glass and stainless steel substrates were characterized with scanning electron microscopy (SEM), X-ray diffractometry equipped with multi purpose attachment. The grain size of the deposited layer was determined by X-ray analysis. The Atomic Force Microscopy (AFM) technique was also conducted on the some selected coatings to reveal grain structure and growth behaviors.
APA, Harvard, Vancouver, ISO, and other styles
4

Jeong, Sun-Chan, Ichiro Katayama, Hirokane Kawakami, Yutaka Watanabe, Hironobu Ishiyama, Nobuaki Imai, Yoshikazu Hirayama, et al. "Diffusion Experiment in Lithium Ionic Conductors with the Radiotracer of [sup 8]Li: from Micro- to Nano-diffusion." In PERSPECTIVE IN NUCLEAR PHYSICS: Proceedings of the 6th Japan-Italy Symposium on Heavy-Ion Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3141646.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Li-ion conductors"

1

WANG, DONGHAI, and TIEN DUONG. Electrochemically Responsive Self-Formed Li-ion Conductors for High Performance Li Metal Anodes. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1579536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography