Academic literature on the topic 'Li[Li0.2Co0.4Mn0.4]O2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Li[Li0.2Co0.4Mn0.4]O2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Li[Li0.2Co0.4Mn0.4]O2"

1

Li, Zhe, Yuhui Wang, Xiaofei Bie, et al. "Low temperature properties of the Li[Li0.2Co0.4Mn0.4]O2 cathode material for Li-ion batteries." Electrochemistry Communications 13, no. 9 (2011): 1016–19. http://dx.doi.org/10.1016/j.elecom.2011.06.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Zhe, Kai Zhu, Yu Hui Wang, et al. "Electrochemical Properties of Li-Riched Li[Li0.2Co0.4Mn 0.4]O2 Cathode Material for Lithium Ion Batteries." Advanced Materials Research 347-353 (October 2011): 3658–61. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3658.

Full text
Abstract:
The Li[Li0.2Co0.4Mn0.4]O2 cathode material was prepared by a sol-gel method. The X-ray diffraction (XRD) spectroscopic showed that the material was a solid solution of LiCoO2 and Li2MnO3. The material showed a reversible discharge capacity of 155.6 mAhg−1 in the voltage window of 2.0-4.3 V after percharge to 4.6 V. While the material cycled in the same voltage window without precharge could only deliver capacity of 77.6 mAhg−1. This high capacity was attributed to the loss of oxygen and structural rearrangement in the precharge process.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Yu Hui, Zhe Li, Kai Zhu, et al. "Low-Temperature Performance of the Li[Li0.2Co0.4Mn0.4]O2 Cathode Material Studied for Li-Ion Batteries." Advanced Materials Research 347-353 (October 2011): 3662–65. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3662.

Full text
Abstract:
The Li[Li0.2Co0.4Mn0.4]O2 cathode material was prepared by a sol-gel method. Combinative X-ray diffraction (XRD) studies showed that the material was a solid solution of LiCoO2 and Li2MnO3. The material showed a reversible discharge capacity of 155.0 mAhg−1 at -20 °C, which is smaller than that at room temperature (245.5 mAhg−1). However, the sample exhibited capacity retention of 96.3 % at -20 °C, only 74.2 % at 25 °C. The good electrochemical cycle performance at low temperature was due to the inexistence of Mn3+ in the material.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Zhe, Ping Zhao, Jun Liu, and Chun-Zhong Wang. "Low Temperature Performance of the Li[Li0.2Co0.4Mn0.4]O2 Cathode Material in Different Electrolytes." Journal of Nanoscience and Nanotechnology 17, no. 8 (2017): 5625–30. http://dx.doi.org/10.1166/jnn.2017.13824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wei, Xin, Shichao Zhang, Lei He, Guanrao Liu, and Puheng Yang. "Structure, Morphology and Electrochemical Properties of Li[Li0.2Co0.4Mn0.4]O2 Cathode Material Synthesized by a Simple Hydrothermal Method." International Journal of Electrochemical Science 8, no. 2 (2013): 1885–94. http://dx.doi.org/10.1016/s1452-3981(23)14273-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Undalov, Yurii K., Eugenii I. Terukov, Dmitrii V. Agafonov та Alexander V. Bobyl. "HOMOLOGOUS SERIES of CHEMICAL COMPOUNDS: THRЕЕ–COMPONENT SYSTEMS (Li+ – Ti4+ – O2–), (Na+ – Ti4+ – O2–), (K+ – V5+ – O2–), (Ba2+ – Cu2+ – O2–) and FOUR–COMPONENT SYSTEM {Li+ – Fe2+ – (PO4)3–}". Bulletin of the Saint Petersburg State Institute of Technology (Technical University) 59 (2021): 26–36. http://dx.doi.org/10.36807/1998-9849-2021-59-85-26-36.

Full text
Abstract:
The paper presents for the first time a method for calculating the formulas of homological series of chemical compounds of systems (Li+ – Ti4+ – O2–), (Na+ – Ti4+ – O2–), (K+ – V5+ – O2–), {Li+ – Fe2+ – (PO4)3–}, (Ba2+ – Cu2+ – O2). The calculation method is confirmed by a sufficiently large number of experimentally obtained (taken from literature) formulas of chemical compounds: 7 compounds – in the system (Li+ – Ti4+ – O2–), 11 compounds – in the system (Na+ – Ti4+ – O2–), 5 compounds – in the system (K+ – V5+ – O2–), 8 compounds – in the system (Ba2+ – Cu2+ – O2). The formulas of the branch
APA, Harvard, Vancouver, ISO, and other styles
7

Lu, Yingying. "Li–O2 batteries." Green Energy & Environment 1, no. 1 (2016): 3. http://dx.doi.org/10.1016/j.gee.2016.04.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lindberg, Jonas, Balázs Endrődi, Gustav Åvall, Patrik Johansson, Ann Cornell, and Göran Lindbergh. "Li Salt Anion Effect on O2 Solubility in an Li–O2 Battery." Journal of Physical Chemistry C 122, no. 4 (2018): 1913–20. http://dx.doi.org/10.1021/acs.jpcc.7b09218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Belharouak, Ilias, Wenquan Lu, Donald Vissers, and Khalil Amine. "Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2." Electrochemistry Communications 8, no. 2 (2006): 329–35. http://dx.doi.org/10.1016/j.elecom.2005.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Takechi, Kensuke, Tohru Shiga, and Takahiko Asaoka. "A Li–O2/CO2 battery." Chemical Communications 47, no. 12 (2011): 3463. http://dx.doi.org/10.1039/c0cc05176d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Li[Li0.2Co0.4Mn0.4]O2"

1

Wei, X., S. C. Zhang, X. X. Lu, and G. R. Liu. "Structure and Electrochemical Performance of Li[Li0.2Co0.4Mn0.4]O2 Cathode Material for Lithium Ion Battery by Co-precipitation Method." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35203.

Full text
Abstract:
The nano-structured Li[Li0.2Co0.4Mn0.4]O2 cathode material is synthesized by a co-precipitation method. X-ray diffraction shows that the synthesized material has a hexagonal α-NaFeO2 type structure with a space group R-3m. Scanning electron microscopy and transmission electron microscopy images show the homogeneous distribution with 100-200 nm. X-ray photoelectron spectroscopy results indicate that the oxi-dation states of Co and Mn in Li[Li0.2Co0.4Mn0.4]O2 are present in trivalence and tetravalence, respectively. The charge-discharge curves and cycling performance are analyzed in detail. The
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Jia. "The O2 electrode performance in the Li-O2 battery." Doctoral thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-259589.

Full text
Abstract:
Li-O2 batteries have been attracting increasing attention and R&D efforts as promising power sources for electric vehicles (EVs) due to their significantly higher theoretical energy densities compared to conventional Li-ion batteries. The research presented in this thesis covers the investigation of factors influencing the decomposition of Li2O2, the development of highly active electrocatalysts, and the design of low-cost and easy-operation binder-free O2 electrodes for Li-O2 batteries. Being the main technique, SR-PXD was used both as a continuous light source to advance the electrochemi
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Chunmei. "Study of rechargeable aprotic Li-O2 batteries." Amiens, 2014. http://www.theses.fr/2014AMIE0111.

Full text
Abstract:
Est-il possible d'augmenter la densité d'énergie des batteries au lithium pour apporter l'autonomie souhaitée pour les applications véhicules électriques, voire réseaux? Une note d'espoir peut effectivement provenir des systèmes métaux-air et plus spécialement du Lithium-air qui suscite aujourd'hui l'engouement des fabricants d'automobiles. Sur la base de calculs théoriques, la technologie Li-air pourrait fournir des densités d'énergie de 3500 Wh kg(-1), soit environ 15 fois plus que celles des accumulateurs à ions lithium. Cependant, pour rendre de tels systèmes opérationnels, de nombreux ver
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Xiangwen. "Soluble catalysts for aprotic Li-O2 batteries." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:c95ccd68-9273-46b0-98cb-19da2149fa3e.

Full text
Abstract:
Aprotic lithium-air (O<sub>2</sub>) batteries have attracted significant interest due to their high theoretical specific energy. In an aprotic Li-O<sub>2</sub> cell, O<sub>2</sub> is reduced to form Li<sub>2</sub>O<sub>2</sub> on discharge and the process is reversed on charge. Li<sub>2</sub>O<sub>2</sub> is an insulating and insoluble solid, leading ultimately to poor cycling rates, low capacities and early cell death if it formed on the electrode surface. This is exacerbated by formation of Li2CO3 due to the cathode degradation with the presence of Li<sub>2</sub>O<sub>2</sub> surface film. I
APA, Harvard, Vancouver, ISO, and other styles
5

Torayev, Amangeldi. "Transport processes in porous Li-O2 battery electrodes." Thesis, Amiens, 2019. http://www.theses.fr/2019AMIE0016.

Full text
Abstract:
Les batteries Li-O2 sont intéressantes grâce à leur capacité de décharge théorique élevée qui est de l'ordre de 1168 mAh/g et aussi au faible coût des matériaux constitutifs. Cette technique doit faire face à plusieurs défis tels que le stabilité, la faible capacité en pratique, la rate capabilité et la durée de vie. Dans la cadre de ma thèse, on se concentre sur les études de mécanismes de transport à l'intérieur des électrodes poreuses des batteries Li-O2. Le transport de l'oxygène joue un rôle crucial sur la performance de la batterie. Parmi les défis mentionnés, on peut en théorique amélio
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Yuhui. "Stability and recharging of aprotic Li-O₂ batteries." Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6350.

Full text
Abstract:
Non-aqueous rechargeable lithium-air (O₂) batteries are receiving intense interest because of their high theoretical specific energy, which are several times greater than that of lithium-ion batteries. To achieve it, the highly reversible formation/decomposition of Li₂O₂ is required to occur in the cathode during cycling. Due to the reactivity of reduced O₂ species, the aprotic electrolyte and carbon electrode substrate would be attacked and then decomposed. The organic carbonate decomposed on discharge, forming C₃H₆(OCO₂Li)₂, Li₂CO₃, HCO₂Li, CH₃CO₂Li, CO₂ and H₂O. Part of these by-products de
APA, Harvard, Vancouver, ISO, and other styles
7

Lu, Xueyi. "Architectural Nanomembranes as Cathode Materials for Li-O2 Batteries." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-228120.

Full text
Abstract:
Li-O2 batteries have attracted world-wide research interest as an appealing candidate for future energy supplies because they possess the highest energy density of any battery technology. However, such system still face some challenges for the practical application. One of the key issues is exploring highly efficient cathode materials for Li-O2 batteries. Here, a rolled-up technology associated with other physical or chemical methods are applied to prepare architectural nanomembranes for the cathode materials in Li-O2 batteries. The strain-release technology has recently proven to be an effici
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Diandian. "Ex situ X-­Ray absorption study of Li-­rich layered cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5773/.

Full text
Abstract:
The Li-rich layered transition metal oxides (LLOs) Li2MnO3-LiMO2 (M=Mn, Co, Ni, etc.) have drawn considerable attention as cathode materials for rechargeable lithium batteries. They generate large reversible capacities but the fundamental reaction mechanism and structural perturbations during cycling remain controversial. In the present thesis, ex situ X-ray absorption spectroscopy (XAS) measurements were performed on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 at different stage of charge during electrochemical oxidation/reduction. K-edge spectra of Co, Mn and Ni were recorded through a voltage range of 3.
APA, Harvard, Vancouver, ISO, and other styles
9

Blanchard, Rémi. "Redox shuttle and positive electrode protection for Li-O2 systems." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI098/document.

Full text
Abstract:
Les travaux de cette thèse focalisent sur la résolution de deux problèmes majeurs des électrodes positives de systèmes Li-O2, dus à la nature du produit de décharge formé pendant la réaction de réduction de l'oxygène, en milieux Li+ : Lithium peroxyde (Li2O2). Le premier problème est lié au processus de formation de ce dernier (étapes successives de nucléation électrochimiques et de dismutation chimique d'un intermédiaire : le superoxide de lithium), qui conduit à la formation de très grosses particules de peroxyde lithium à la surface de l'électrode. Du fait de leurs taille et de leur résisti
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Zheng. "Synthesis and battery application of nanomaterials and the mechanism of O2 reduction in aprotic Li-O2 batteries." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/15694.

Full text
Abstract:
Hunting for improved energy storage devices based on rechargeable Li-ion batteries and other advanced rechargeable batteries is one of the hottest topics in today's society. Both Li- ion batteries and Li-O2 batteries have been studied within the thesis. The research work of this thesis contains two different parts. Part 1. The controlled synthesis of the extreme small sized nanoparticles and their application for Li-ion batteries; Part 2. The study of the O2 reduction mechanism in Li-O2 batteries with aprotic electrolytes. In the first part, two different types of extremely small-sized TiO2 na
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Li[Li0.2Co0.4Mn0.4]O2"

1

Zhang, Huamin, Xianfeng Li, and Hongzhang Zhang. Li-S and Li-O2 Batteries with High Specific Energy. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-0746-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Xianfeng, Huamin Zhang, and Hongzhang Zhang. Li-S and Li-O2 Batteries with High Specific Energy: Research and Development. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Xianfeng, Huamin Zhang, and Hongzhang Zhang. Li-S and Li-O2 Batteries with High Specific Energy: Research and Development. Springer London, Limited, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Li[Li0.2Co0.4Mn0.4]O2"

1

Neale, Alex R., Peter Goodrich, Christopher Hardacre, and Johan Jacquemin. "Electrolytes for Li-O2 Batteries." In Metal-Air Batteries. Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807666.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Paolella, Andrea. "Interfacial Reactions in Li–S and Li–O2 Batteries." In Green Energy and Technology. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63713-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Huamin, Xianfeng Li, and Hongzhang Zhang. "Li–S and Li–O2 Batteries with High Specific Energy." In SpringerBriefs in Molecular Science. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0746-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Chuan-zheng, Yuwan Lou, Jian Zhang, Xiaohua Xie, and Baojia Xia. "Cycle Mechanism of Graphite/[Li(Ni0.4Co0.2Mn0.4)O2 + LiMn2O4] Battery." In Materials and Working Mechanisms of Secondary Batteries. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5955-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khetan, Abhishek, Dilip Krishnamurthy, and Venkatasubramanian Viswanathan. "Towards Synergistic Electrode–Electrolyte Design Principles for Nonaqueous Li–O2 batteries." In Topics in Current Chemistry Collections. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00593-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ajeesh Mohan, T., M. Jithin, and Malay K. Das. "Effect of Hierarchical Porous Media on Specific Capacity and Energy Density of Li-O2 Battery." In Fluid Mechanics and Fluid Power, Volume 6. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-5755-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Chuan-zheng, Yuwan Lou, Jian Zhang, Xiaohua Xie, and Baojia Xia. "Mechanism Research of the Cycle Process for 2H-Graphite/Li(Ni,Co,Mn)O2 Battery." In Materials and Working Mechanisms of Secondary Batteries. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5955-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Chuan-zheng, Yuwan Lou, Jian Zhang, Xiaohua Xie, and Baojia Xia. "Mechanism of Storage Process for Graphite/LiCoO2 and Graphite/Li(Ni1/3Co1/3Mn1/3)O2 Batteries." In Materials and Working Mechanisms of Secondary Batteries. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5955-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Chuan-zheng, Yuwan Lou, Jian Zhang, Xiaohua Xie, and Baojia Xia. "Order–Disorder of Ni, Co, and Mn at (3b) Position in Li(Ni1/3Co1/3Mn1/3)O2." In Materials and Working Mechanisms of Secondary Batteries. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5955-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Chuan-zheng, Yuwan Lou, Jian Zhang, Xiaohua Xie, and Baojia Xia. "Mechanism of Charge–Discharge Process of Graphite/LiCoO2 and Graphite/Li(Ni1/3Co1/3Mn1/3)O2 Batteries." In Materials and Working Mechanisms of Secondary Batteries. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5955-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Li[Li0.2Co0.4Mn0.4]O2"

1

Hsu, H. S., and J. H. DeVan. "Thermodynamics of the Corrosion of Chromium in Molten Carbonates." In CORROSION 1985. NACE International, 1985. https://doi.org/10.5006/c1985-85343.

Full text
Abstract:
Abstract To define and study the mechanisms that control the corrosion of current collector materials in molten carbonate fuel cells (MCFC), the corrosion of chromium in Li2CO3-K2CO3 melts has been investigated from a thermodynamic point of view. Thermochemical calculations with the SOLGASMIX-PV computer program were used to establish equilibrium phase relationships. This paper considers phase stability diagrams of Cr-Li2CO3, Cr-K2CO3, and Cr-(Li,K)2CO3 systems at 650°C. The condensed phases at equilibrium are mapped as functions of logaO2andlogaCO2 for the gas mixture O2, CO2, and Ar; aO2anda
APA, Harvard, Vancouver, ISO, and other styles
2

Shaju, K. M., G. V. Subba Rao, and B. V. R. Chowdari. "O2-type Li2/3(Ni1/3Mn2/3)O2 as cathode material for Li-ion batteries." In Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Sunil, Arun Yadav, Parasharam M. Shirage, and Somaditya Sen. "Synthesis and electrical properties of Li[Ni1/3Mn1/3Co1/3]O2." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Jeong-Min, Hyun-Ju Kim, Bong-Soo Jin, and Hyun-Soo Kim. "Synthesis and electrochemical performance of Li[Ni0.7Co0.1Mn0.2]O2/C cathode materials." In 2011 IEEE Nanotechnology Materials and Devices Conference (NMDC 2011). IEEE, 2011. http://dx.doi.org/10.1109/nmdc.2011.6155276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Tongwanming. "Strategies of promotion solution growth mechanism in Aprotic Li-O2 batteries." In 2022 International Conference on Optoelectronic Information and Functional Materials (OIFM 2022), edited by Chao Zuo. SPIE, 2022. http://dx.doi.org/10.1117/12.2639367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yogi, C., N. Takao, T. Watanabe, et al. "Operando X-ray diffraction analysis for a glyme-based Li-O2 battery." In FRONTIERS IN MATERIALS SCIENCE (FMS2015): Proceedings of the 2nd International Symposium on Frontiers in Materials Science. Author(s), 2016. http://dx.doi.org/10.1063/1.4961359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rakebrandt, J. H., P. Smyrek, Y. Zheng, H. J. Seifert, and W. Pfleging. "Laser processing of thick Li(NiMnCo)O2 electrodes for lithium-ion batteries." In SPIE LASE, edited by Udo Klotzbach, Kunihiko Washio, and Rainer Kling. SPIE, 2017. http://dx.doi.org/10.1117/12.2252093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prathibha, G., P. Rosaiah, B. Purusottam Reddy, K. Sivajee Ganesh, and O. M. Hussain. "Synthesis and electrochemical properties of layered structure Li[Ni0.5Co0.25Mn0.25]O2 cathode material." In NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smyrek, P., J. Pröll, H. J. Seifert, and W. Pfleging. "Femtosecond laser modification of Li(NiCoMn)O2 electrodes for lithium-ion batteries." In CLEO: Applications and Technology. OSA, 2014. http://dx.doi.org/10.1364/cleo_at.2014.aw1h.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rakebrandt, J. H., P. Smyrek, Y. Zheng, et al. "Laser micro structuring of composite Li(Ni0.6Mn0.2Co0.2)O2 cathode layersfor lithium-ion batteries." In 2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2017. http://dx.doi.org/10.1109/3m-nano.2017.8286297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!