Journal articles on the topic 'Li/Na-Ion batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Li/Na-Ion batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gupta, Aman, Ditipriya Bose, Sandeep Tiwari, Vikrant Sharma, and Jai Prakash. "Techno–economic and environmental impact analysis of electric two-wheeler batteries in India." Clean Energy 8, no. 3 (May 3, 2024): 147–56. http://dx.doi.org/10.1093/ce/zkad094.
Full textConder, Joanna, Cyril Marino, Petr Novák, and Claire Villevieille. "Do imaging techniques add real value to the development of better post-Li-ion batteries?" Journal of Materials Chemistry A 6, no. 8 (2018): 3304–27. http://dx.doi.org/10.1039/c7ta10622j.
Full textWalter, Marc, Maksym V. Kovalenko, and Kostiantyn V. Kravchyk. "Challenges and benefits of post-lithium-ion batteries." New Journal of Chemistry 44, no. 5 (2020): 1677–83. http://dx.doi.org/10.1039/c9nj05682c.
Full textPeng, Qiong, Javed Rehman, Kamel Eid, Ayman S. Alofi, Amel Laref, Munirah D. Albaqami, Reham Ghazi Alotabi, and Mohamed F. Shibl. "Vanadium Carbide (V4C3) MXene as an Efficient Anode for Li-Ion and Na-Ion Batteries." Nanomaterials 12, no. 16 (August 17, 2022): 2825. http://dx.doi.org/10.3390/nano12162825.
Full textTian, Meng, Chaohui Wei, Jinlei Zhang, and Zhaoxiang Wang. "Electronic properties and storage capability of two-dimensional nitridosilicate MnSi2N4 from first-principles." AIP Advances 12, no. 11 (November 1, 2022): 115127. http://dx.doi.org/10.1063/5.0127013.
Full textKim, Haegyeom, Jihyun Hong, Kyu-Young Park, Hyungsub Kim, Sung-Wook Kim, and Kisuk Kang. "Aqueous Rechargeable Li and Na Ion Batteries." Chemical Reviews 114, no. 23 (September 11, 2014): 11788–827. http://dx.doi.org/10.1021/cr500232y.
Full textKotobuki, Masashi. "Recent progress of ceramic electrolytes for post Li and Na batteries." Functional Materials Letters 14, no. 03 (February 18, 2021): 2130003. http://dx.doi.org/10.1142/s1793604721300036.
Full textPuttaswamy, Rangaswamy, Ranjith Krishna Pai, and Debasis Ghosh. "Recent progress in quantum dots based nanocomposite electrodes for rechargeable monovalent metal-ion and lithium metal batteries." Journal of Materials Chemistry A 10, no. 2 (2022): 508–53. http://dx.doi.org/10.1039/d1ta06747h.
Full textUstyuzhanina, S. V., and A. A. Kistanov. "Pervoprintsipnye issledovaniya adsorbtsii Li i Na na poverkhnosti monosloya MgCl2." Письма в Журнал экспериментальной и теоретической физики 118, no. 9-10 (11) (December 15, 2023): 683–88. http://dx.doi.org/10.31857/s1234567823210097.
Full textSun, Meiling, Gwenaëlle Rousse, Matthieu Saubanère, Marie-Liesse Doublet, Daniel Dalla Corte, and Jean-Marie Tarascon. "A2VO(SO4)2 (A = Li, Na) as Electrodes for Li-Ion and Na-Ion Batteries." Chemistry of Materials 28, no. 18 (September 14, 2016): 6637–43. http://dx.doi.org/10.1021/acs.chemmater.6b02759.
Full textTada, Kohei, Hiroyuki Ozaki, Tetsu Kiyobayashi, Mitsunori Kitta, and Shingo Tanaka. "How does the Li-distribution in the 16d sites determine the stability of A3(Li,Ti5)O12 (A = Li and Na)?" RSC Advances 10, no. 55 (2020): 33509–16. http://dx.doi.org/10.1039/d0ra06125e.
Full textCampéon, Benoît D. L., Chen Wang, and Yuta Nishina. "Iron nanoparticle templates for constructing 3D graphene framework with enhanced performance in sodium-ion batteries." Nanoscale 12, no. 42 (2020): 21780–87. http://dx.doi.org/10.1039/d0nr05682k.
Full textKubota, Kei, Mouad Dahbi, Tomooki Hosaka, Shinichi Kumakura, and Shinichi Komaba. "Towards K-Ion and Na-Ion Batteries as “Beyond Li-Ion”." Chemical Record 18, no. 4 (February 14, 2018): 459–79. http://dx.doi.org/10.1002/tcr.201700057.
Full textRudola, Ashish, Christopher J. Wright, and Jerry Barker. "Reviewing the Safe Shipping of Lithium-Ion and Sodium-Ion Cells: A Materials Chemistry Perspective." Energy Material Advances 2021 (November 25, 2021): 1–12. http://dx.doi.org/10.34133/2021/9798460.
Full textLiang, Hao-Jie, Bao-Hua Hou, Wen-Hao Li, Qiu-Li Ning, Xu Yang, Zhen-Yi Gu, Xue-Jiao Nie, Guang Wang, and Xing-Long Wu. "Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries." Energy & Environmental Science 12, no. 12 (2019): 3575–84. http://dx.doi.org/10.1039/c9ee02759a.
Full textTarascon, Jean-Marie. "Na-ion versus Li-ion Batteries: Complementarity Rather than Competitiveness." Joule 4, no. 8 (August 2020): 1616–20. http://dx.doi.org/10.1016/j.joule.2020.06.003.
Full textKumar, Saurabh, R. Ranjeeth, Neeraj Kumar Mishra, Rajiv Prakash, and Preetam Singh. "NASICON-structured Na3Fe2PO4(SO4)2: a potential cathode material for rechargeable sodium-ion batteries." Dalton Transactions 51, no. 15 (2022): 5834–40. http://dx.doi.org/10.1039/d2dt00780k.
Full textHan, Ying, Ning Lin, Tianjun Xu, Tieqiang Li, Jie Tian, Yongchun Zhu, and Yitai Qian. "An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries." Nanoscale 10, no. 7 (2018): 3153–58. http://dx.doi.org/10.1039/c7nr08886h.
Full textLi, Min, Angelo Mullaliu, Stefano Passerini, and Marco Giorgetti. "Titanium Activation in Prussian Blue Based Electrodes for Na-ion Batteries: A Synthesis and Electrochemical Study." Batteries 7, no. 1 (January 7, 2021): 5. http://dx.doi.org/10.3390/batteries7010005.
Full textLi, Min, Angelo Mullaliu, Stefano Passerini, and Marco Giorgetti. "Titanium Activation in Prussian Blue Based Electrodes for Na-ion Batteries: A Synthesis and Electrochemical Study." Batteries 7, no. 1 (January 7, 2021): 5. http://dx.doi.org/10.3390/batteries7010005.
Full textMukherjee, Ayan, Rosy, Tali Sharabani, Ilana Perelshtein, and Malachi Noked. "High-rate Na0.7Li2.3V2(PO4)2F3 hollow sphere cathode prepared via a solvothermal and electrochemical ion exchange approach for lithium ion batteries." Journal of Materials Chemistry A 8, no. 40 (2020): 21289–97. http://dx.doi.org/10.1039/d0ta07912j.
Full textChu, Kainian, Mulin Hu, Bo Song, Senlin Chen, Junyu Li, Fangcai Zheng, Zhiqiang Li, Rui Li, and Jingya Zhou. "MOF-derived nitrogen-doped porous carbon nanofibers with interconnected channels for high-stability Li+/Na+ battery anodes." RSC Advances 13, no. 9 (2023): 5634–42. http://dx.doi.org/10.1039/d2ra08135k.
Full textAnh Nguyen, Hoang, Pham Phuong Nam Le, Le Thanh Nguyen Huynh, Tran Van Man, and My Loan Phung Le. "Investigation of Na-immigration into olivine LiFePO4." Science and Technology Development Journal - Natural Sciences 3, no. 1 (April 26, 2019): 46–54. http://dx.doi.org/10.32508/stdjns.v3i1.724.
Full textXu, Zhijie, Fangxu Hu, De Li, and Yong Chen. "Electrochemical Oscillation during Galvanostatic Charging of LiCrTiO4 in Li-Ion Batteries." Materials 14, no. 13 (June 29, 2021): 3624. http://dx.doi.org/10.3390/ma14133624.
Full textArroyo-De Dompablo, M. Elena. "Understanding sodium versus lithium intercalation potentials of electrode materials for alkali-ion batteries." Functional Materials Letters 07, no. 06 (December 2014): 1440003. http://dx.doi.org/10.1142/s1793604714400037.
Full textKo, Wonseok, Bonyoung Koo, Hyunyoung Park, Jungmin Kang, and Jongsoon Kim. "Recent Progress of Cathode Materials for Na-ion batteries." Ceramist 25, no. 1 (March 31, 2022): 76–89. http://dx.doi.org/10.31613/ceramist.2022.25.1.04.
Full textSchneider, Simon F., Christian Bauer, Petr Novák, and Erik J. Berg. "A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion batteries." Sustainable Energy & Fuels 3, no. 11 (2019): 3061–70. http://dx.doi.org/10.1039/c9se00427k.
Full textWei, Zengxi, Lei Wang, Ming Zhuo, Wei Ni, Hongxia Wang, and Jianmin Ma. "Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries." Journal of Materials Chemistry A 6, no. 26 (2018): 12185–214. http://dx.doi.org/10.1039/c8ta02695e.
Full textRahman, Muhammad Mominur, and Feng Lin. "Oxygen Redox Chemistry in Rechargeable Li-Ion and Na-Ion Batteries." Matter 4, no. 2 (February 2021): 490–527. http://dx.doi.org/10.1016/j.matt.2020.12.004.
Full textChayambuka, Kudakwashe, Grietus Mulder, Dmitri L. Danilov, and Peter H. L. Notten. "From Li‐Ion Batteries toward Na‐Ion Chemistries: Challenges and Opportunities." Advanced Energy Materials 10, no. 38 (August 12, 2020): 2001310. http://dx.doi.org/10.1002/aenm.202001310.
Full textRobert Ilango, P., and Shengjie Peng. "Electrospinning techniques for Li, Na and K-ion batteries." Current Opinion in Electrochemistry 18 (December 2019): 106–12. http://dx.doi.org/10.1016/j.coelec.2019.10.016.
Full textZhu, Jiajie, Husam N. Alshareef, and Udo Schwingenschlögl. "Functionalized NbS2as cathode for Li- and Na-ion batteries." Applied Physics Letters 111, no. 4 (July 24, 2017): 043903. http://dx.doi.org/10.1063/1.4985694.
Full textČerný, Radovan, Emilie Didelot, Yolanda Sadikin, Matteo Brighi, and Fabrizio Murgia. "Metal hydro-borates for Li- and Na-ion batteries." Acta Crystallographica Section A Foundations and Advances 74, a2 (August 22, 2018): e282-e282. http://dx.doi.org/10.1107/s2053273318090939.
Full textFan, Long, Jingjing Zhang, Jianhua Cui, Yongchun Zhu, Jianwen Liang, Lili Wang, and Yitai Qian. "Electrochemical performance of rod-like Sb–C composite as anodes for Li-ion and Na-ion batteries." Journal of Materials Chemistry A 3, no. 7 (2015): 3276–80. http://dx.doi.org/10.1039/c4ta06771a.
Full textHuang, Chunlai, Junping Hu, and Chuying Ouyang. "Theoretical prediction on net boroxene as a promising Li/Na-ion batteries anode." RSC Advances 13, no. 24 (2023): 16758–64. http://dx.doi.org/10.1039/d3ra03007e.
Full textZhang, Yujie, Jingwei Shen, Xue Li, Zhongxue Chen, Shun-an Cao, Ting Li, and Fei Xu. "Rechargeable Mg–M (M = Li, Na and K) dual-metal–ion batteries based on a Berlin green cathode and a metallic Mg anode." Physical Chemistry Chemical Physics 21, no. 36 (2019): 20269–75. http://dx.doi.org/10.1039/c9cp03836a.
Full textSøndergaard, M., K. J. Dalgaard, E. D. Bøjesen, K. Wonsyld, S. Dahl, and B. B. Iversen. "In situ monitoring of TiO2(B)/anatase nanoparticle formation and application in Li-ion and Na-ion batteries." Journal of Materials Chemistry A 3, no. 36 (2015): 18667–74. http://dx.doi.org/10.1039/c5ta04110d.
Full textKuganathan, Navaratnarajah, Raveena Sukumar, and Poobalasuntharam Iyngaran. "Defect Properties of Li2NiGe3O8." Clean Technologies 4, no. 3 (July 1, 2022): 619–28. http://dx.doi.org/10.3390/cleantechnol4030038.
Full textSun, Ya-Nan, Liangtao Yang, Zhu-Yin Sui, Li Zhao, Mustafa Goktas, Hang-Yu Zhou, Pei-Wen Xiao, Philipp Adelhelm, and Bao-Hang Han. "Synthesis and thermodynamic investigation of MnO nanoparticle anchored N-doped porous carbon as the anode for Li-ion and Na-ion batteries." Materials Chemistry Frontiers 3, no. 12 (2019): 2728–37. http://dx.doi.org/10.1039/c9qm00599d.
Full textZhao, Yang. "Interface Engineering and Understanding for the Next-Generation Batteries." ECS Meeting Abstracts MA2022-01, no. 1 (July 7, 2022): 75. http://dx.doi.org/10.1149/ma2022-01175mtgabs.
Full textLécuyer, Margaud, Marc Deschamps, Dominique Guyomard, Joël Gaubicher, and Philippe Poizot. "Electrochemical Assessment of Indigo Carmine Dye in Lithium Metal Polymer Technology." Molecules 26, no. 11 (May 21, 2021): 3079. http://dx.doi.org/10.3390/molecules26113079.
Full textHu, Huating, Liming Wu, Paul Gebhardt, Xiaofei Zhang, Alexey Cherevan, Birgit Gerke, Rainer Pöttgen, Andrea Balducci, Stefano Passerini, and Dominik Eder. "Growth mechanism and electrochemical properties of hierarchical hollow SnO2 microspheres with a “chestnut” morphology." CrystEngComm 19, no. 43 (2017): 6454–63. http://dx.doi.org/10.1039/c7ce01288h.
Full textVujkovic, Milica. "Comparison of lithium and sodium intercalation materials." Journal of the Serbian Chemical Society 80, no. 6 (2015): 801–4. http://dx.doi.org/10.2298/jsc141119127v.
Full textYang, Yingchang, Xiaobo Ji, Mingjun Jing, Hongshuai Hou, Yirong Zhu, Laibing Fang, Xuming Yang, Qiyuan Chen, and Craig E. Banks. "Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries." Journal of Materials Chemistry A 3, no. 10 (2015): 5648–55. http://dx.doi.org/10.1039/c4ta05611f.
Full textLiu, Tianyuan, Ki Chul Kim, Byeongyong Lee, Zhongming Chen, Suguru Noda, Seung Soon Jang, and Seung Woo Lee. "Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries." Energy & Environmental Science 10, no. 1 (2017): 205–15. http://dx.doi.org/10.1039/c6ee02641a.
Full textHe, Yu, Xia Lu, and Duck Young Kim. "A first-principles study on Si24 as an anode material for rechargeable batteries." RSC Advances 8, no. 36 (2018): 20228–33. http://dx.doi.org/10.1039/c8ra01829d.
Full textKulish, Vadym V., and Sergei Manzhos. "Comparison of Li, Na, Mg and Al-ion insertion in vanadium pentoxides and vanadium dioxides." RSC Advances 7, no. 30 (2017): 18643–49. http://dx.doi.org/10.1039/c7ra02474f.
Full textLiao, Jin-Yun, Brandon De Luna, and Arumugam Manthiram. "TiO2-B nanowire arrays coated with layered MoS2 nanosheets for lithium and sodium storage." Journal of Materials Chemistry A 4, no. 3 (2016): 801–6. http://dx.doi.org/10.1039/c5ta07064c.
Full textWang, Jian-Gan, Huanhuan Sun, Huanyan Liu, Dandan Jin, Rui Zhou, and Bingqing Wei. "Edge-oriented SnS2 nanosheet arrays on carbon paper as advanced binder-free anodes for Li-ion and Na-ion batteries." Journal of Materials Chemistry A 5, no. 44 (2017): 23115–22. http://dx.doi.org/10.1039/c7ta07553g.
Full textSong, Weixin, Xiaobo Ji, Jun Chen, Zhengping Wu, Yirong Zhu, Kefen Ye, Hongshuai Hou, Mingjun Jing, and Craig E. Banks. "Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries." Physical Chemistry Chemical Physics 17, no. 1 (2015): 159–65. http://dx.doi.org/10.1039/c4cp04649h.
Full text