Academic literature on the topic 'Li/S'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Li/S.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Li/S"

1

Zeng, Lin-Chao, Wei-Han Li, Yu Jiang, and Yan Yu. "Recent progress in Li–S and Li–Se batteries." Rare Metals 36, no. 5 (March 15, 2017): 339–64. http://dx.doi.org/10.1007/s12598-017-0891-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Haegyeom, Hee-Dae Lim, Jinsoo Kim, and Kisuk Kang. "Graphene for advanced Li/S and Li/air batteries." J. Mater. Chem. A 2, no. 1 (2014): 33–47. http://dx.doi.org/10.1039/c3ta12522j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heunpil Oh. "Li Gou′s Historical Lyrics." Journal of Chinese Language and Literature ll, no. 73 (February 2016): 139–60. http://dx.doi.org/10.26586/chls.2016..73.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abraham, K. M., D. M. Pasquariello, and G. F. McAndrews. "Li / MoSe3 S Secondary Battery." Journal of The Electrochemical Society 134, no. 11 (November 1, 1987): 2661–65. http://dx.doi.org/10.1149/1.2100268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Newsom, Brent. "Transoceanic Lights by S. Li." Pleiades: Literature in Context 36, no. 1S (2016): 35–37. http://dx.doi.org/10.1353/plc.2016.0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ji, Xiulei, and Linda F. Nazar. "Advances in Li–S batteries." Journal of Materials Chemistry 20, no. 44 (2010): 9821. http://dx.doi.org/10.1039/b925751a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Younesi, Reza, Gabriel M. Veith, Patrik Johansson, Kristina Edström, and Tejs Vegge. "Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S." Energy & Environmental Science 8, no. 7 (2015): 1905–22. http://dx.doi.org/10.1039/c5ee01215e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bai, Zilong, Fengyuan Li, and Shuqiang Li. "Ten new species of the spider genus Sinoderces Li & Li, 2017 from China, Laos and Thailand (Araneae, Psilodercidae)." ZooKeys 886 (November 5, 2019): 79–111. http://dx.doi.org/10.3897/zookeys.886.39212.

Full text
Abstract:
Ten new species of the spider family Psilodercidae Machado, 1951 are described from tropical East Asia, including five species found in China: Sinoderces luohanensis Li & Li, sp. nov. (♂♀), S. xueae Li & Li, sp. nov. (♂♀), S. taichi Li & Li, sp. nov. (♂♀), S. wenshanensis Li & Li, sp. nov. (♂♀), S. aiensis Li & Li, sp. nov. (♂♀); three are from Laos: S. khanensis Li & Li, sp. nov. (♂♀), S. phathaoensis Li & Li, sp. nov. (♂♀), S. kieoensis Li & Li, sp. nov. (♂); and the rest are from Thailand: S. saraburiensis Li & Li, sp. nov. (♂), S. dewaroopensis Li & Li, sp. nov. (♂♀). Types of all new species are deposited in the Institute of Zoology, Chinese Academy of Sciences in Beijing, China.
APA, Harvard, Vancouver, ISO, and other styles
9

Luo, Qian, Ruixue Tian, Aimin Wu, Xufeng Dong, Xiaozhe Jin, Shuyu Zhou, and Hao Huang. "In-built durable Li–S counterparts from Li–TiS2 batteries." Materials Today Energy 17 (September 2020): 100439. http://dx.doi.org/10.1016/j.mtener.2020.100439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bruce, Peter G., Stefan A. Freunberger, Laurence J. Hardwick, and Jean-Marie Tarascon. "Li–O2 and Li–S batteries with high energy storage." Nature Materials 11, no. 1 (December 15, 2011): 19–29. http://dx.doi.org/10.1038/nmat3191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Li/S"

1

Barchasz, Céline. "Développement d'accumulateurs Li/S." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00681504.

Full text
Abstract:
Ces travaux ont permis d'approfondir les connaissances du mécanisme de déchargepeu conventionnel de l'accumulateur Li/S et de ses limitations. L'ensemble desrésultats a convergé vers une unique conclusion, à savoir que le système Li/S estprincipalement limité par le phénomène de passivation de l'électrode positive en finde décharge. Les polysulfures de lithium à chaines courtes précipitent à la surface del'électrode positive de soufre. Isolants électroniques, ils sont responsables de la perteprogressive de surface active de l'électrode et de la fin prématurée de la décharge.Ainsi, les performances électrochimiques ont pu être significativement améliorées entravaillant sur la morphologie de l'électrode positive, et sur la composition del'électrolyte. En augmentant la surface spécifique de l'électrode, la quantité depolysulfures de lithium qui peut précipiter en fin de décharge est augmentée, et lapassivation totale de l'électrode est retardée. En augmentant la solubilité despolysulfures de lithium dans l'électrolyte, la précipitation des espèces est retardée etla décharge prolongée. Dans cette optique, les solvants de type PEGDME semblentêtre les plus prometteurs à ce jour. Enfin, un mécanisme possible de réduction dusoufre en électrolyte de type éther a pu être proposé.
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Luyi. "Batteries beyond Li-ion : an investigation of Li-Air and Li-S batteries." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/384921/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bartoš, Miroslav. "Pistolová páječka s napájením z baterií Li-Ion." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377105.

Full text
Abstract:
This master‘s thesis deals with the design of battery powered soldering iron. The soldering iron will be placed in the plastic box from a conventional transformer soldering iron. First, we need to find the parameters of the original transformer soldering iron. Then design a synchronous step-down converter, driver of converter, BMS circuits, and component placement in a plastic box. The battery-powered soldering iron was successfully revived and tested, the final parameters of the converter are: voltage 0.4 V at 80 A current. The total power on the soldering wire is 32 W. Technically, this is a very interesting alternative to the classic version of the soldering iron, which can be used for assembly or repairs in poorly accessible locations.
APA, Harvard, Vancouver, ISO, and other styles
4

Řehák, Petr. "Studium vlivu modifikace separátorů na vlastnosti Li-S akumulátorů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442444.

Full text
Abstract:
This thesis deals with the development and current issues of Li-ion and Li-S accumulators, especially the separators. In the theoretical part is described history of Li-ion batteries, their properties and materials for the positive electrode. Li-S batteries and their problems are also described in this diploma thesis. In the practical part, electrochemical methods were described, and several separator samples with various modifications were created. These samples were then photographed using an SEM electron microscope and evaluated using electrochemical methods.
APA, Harvard, Vancouver, ISO, and other styles
5

Vinci, Valentin. "Accumulateurs Li/S : barrières organiques à la réactivité des polysulfures." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI043/document.

Full text
Abstract:
Les objectifs de ce travail de thèse étaient d’explorer de nouvelles voies pour l’amélioration des performances des accumulateurs Li/S, systèmes présentant de fortes densités d’énergie théorique dont les performances sont limitées par un mécanisme électrochimique incluant des intermédiaires solubles et réactifs. Ces intermédiaires induisent une faible efficacité coulombique et une perte importante de capacité au cours du cyclage. Plusieurs stratégies ont été mises en place pour créer une barrière de nature organique, au transport ou à la réactivité de ces polysulfures, tout en gardant une approche versatile et simple à mettre en œuvre. De bons résultats ont été obtenus en termes d’efficacité coulombique et de cyclabilité, notamment grâce à l’utilisation d’un matériau polymère capable d’interactions ioniques avec les intermédiaires soufrés. Le mécanisme de dépôt du lithium et de croissance dendritique a été également étudié, pour une compréhension plus complète du système
The objectives of this thesis work were to explore new strategies to improve the performance of Li / S accumulators, systems exhibit with high theoretical energy densities whose performance is limited by an electrochemical mechanism including soluble and reactive intermediates. These intermediates induce a low coulombic efficiency and a significant loss of capacity during cycling. Several strategies have been evaluated to create a barrier of organic nature, which mitigate the transport or the reactivity of these polysulfides. The solutions explored are versatile and simple to implement. Good results have been obtained in terms of coulombic efficiency and cyclability, in particular through the use of a polymeric material enables to form ionic interactions with the sulfur intermediates. The mechanism of lithium deposition and dendritic growth has also been studied, for a more complete understanding of the system
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Yu-Ming. "The Fabrication of Advanced Electrochemical Energy Storage Devices With the integration of Ordered Nanomaterial Electrodes." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron148553322128565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jaššo, Kamil. "Vliv lisovacího tlaku na elektrochemické vlastnosti elektrod pro akumulátory Li-S." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-254484.

Full text
Abstract:
The purpose of this diploma thesis is to describe the impact of compaction pressure on the electrochemical parameters of lithium-sulfur batteries. Theoretical part of this thesis contains briefly described terminology and general issues of batteries and their division. Every kind of battery is provided with a closer description of a specific battery type. A separate chapter is dedicated to lithium cells, mainly lithium-ion batteries. Considering various composition of lithium-ion batteries, this chapter deeply analyzes mostly used active materials of electrodes, used electrolytes and separators. Considering that the electrochemical principle of Li-S and Li-O batteries is different to Li-ion batteries, these accumulators of new generation are included in individual subhead. In the experimental part of this thesis are described methods used to measure electrochemical parameters of Li-S batteries. Next chapter contains description of preparing individual electrodes and their composition. Rest of the experimental part of my thesis is dedicated to the description of individual experiments and achieved results.
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Yanghai. "Matériaux de cathode et électrolytes solides en sulfures pour batteries au lithium." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S094/document.

Full text
Abstract:
Les batteries lithium-air et Li-S sont des techniques prometteuses pour un stockage efficace d’énergie électrochimique. Les principaux défis sont de développer un électrolyte solide à haute conductivité ionique et des cathodes efficaces. Dans ce travail, des aérogels de carbone conducteurs avec une double porosité ont été synthétisés en utilisant la méthode de sol-gel. Ils ont été utilisés comme cathode dans des batteries lithium-air. Ces cathodes peuvent fournir deux types de canaux pour le stockage de produits de décharge, facilitant la diffusion gaz-liquide et réduisant ainsi le risque de colmatage. Presque 100 cycles été obtenus avec une capacité de 0,4 mAh et une densité de courant de 0,1 mA/cm². Pour le développement d'électrolyte solide stable et conducteur, les sulfures, en particulier Li4SnS4 et son dérivé Li10SnP2S12 ont été particulièrement étudiés. Ces composés ont été synthétisés en utilisant une technique en deux étapes comprenant la mécanosynthèse et un traitement thermique à température relativement basse qui a été optimisé afin d'améliorer la conductivité ionique. La meilleure conductivité obtenue est de 8,27×10-4 S / cm à 25°C et ces électrolytes présentent une grande stabilité électrochimique sur une large gamme de voltage de 0,5 à 7V. Les couches minces ont également été déposées en utilisant la technique de pulvérisation cathodique, avec en général une conductivité ionique améliorée. La performance des batteries Li-S assemblées avec ces électrolytes massifs doit être améliorée, en particulier en améliorant la conductivité ionique de l'électrolyte
Lithium-air and Li-S batteries are promising techniques for high power density storage. The main challenges are to develop solid electrolyte with high ionic conductivity and highly efficient catalyzed cathode. In this work, highly conductive carbon aerogels with dual-pore structure have been synthesized by using sol-gel method, and have been used as air cathode in Lithium-air batteries. This dual- pore structure can provide two types of channels for storing discharge products and for gas-liquid diffusion, thus reducing the risk of clogging. Nearly 100 cycles with a capacity of 0.4mAh at a current density of 0.1 mA cm-2 have been obtained. For developing stable and highly conductive solid electrolyte, sulfides, especially Li4SnS4 and its phosphorous derivative Li10SnP2S12 have been particularly investigated. These compounds have been synthesized by using a two-step technique including ball milling and a relatively low temperature heat treatment. The heat treatment has been carefully optimized in order to enhance the ionic conductivity. The best-obtained conductivity is 8.27×10-4 S/cm at 25°C and the electrolytes show high electrochemical stability over a wide working range of 0.5 – 7V. Thin films have also been deposited by using the sputtering technique, with generally improved ionic conductivity. The performance of the Li-S batteries assembled with these bulk electrolytes is still to be improved, particularly by improving the ionic conductivity of the electrolyte
APA, Harvard, Vancouver, ISO, and other styles
9

Dirlam, Philip Thomas, and Philip Thomas Dirlam. "Preparation of Electroactive Materials for High Performance Lithium-Sulfur Batteries." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621564.

Full text
Abstract:
This dissertation is comprised of five chapters detailing advances in the synthesis and preparation of polymers and materials and the application of these materials in lithium-sulfur batteries for next-generation energy storage technology. The research described herein discusses progress towards overcoming three critical challenges presented for optimizing Li-S battery performance, specifically, addressing the highly electrically insulating nature of elemental sulfur, extending the cycling lifetime of Li-S batteries, and enhancing the charge discharge rate capability of Li-S cathodes. The first chapter is a review highlighting the use of polymers in conventional lithium-sulfur battery cathodes. Li-S battery technology presents a grand opportunity to realize an electrochemical energy storage system with high enough capacity and energy density capable of addressing the needs presented by electrical vehicles and base load storage. Polymers are ubiquitous throughout conventional Li-S batteries and their use has been critical in overcoming the challenges presented for optimizing Li-S cathode performance towards practical implementation. The high electrical resistivity of elemental sulfur requires the incorporation of conductive additives in order to formulate it into a functional cathode. A polymer binder must be utilized to integrate the elemental sulfur as the active material with the conductive additives into an electrically conductive composite affixed to a current collector. The electrochemical action of the Li-S battery results in the electroactive sulfur species converting between high and low order lithium polysulfides as the battery is discharged and charged. These lithium polysulfides become soluble at various stages throughout this cycling process that lead to a host of complications including the loss of electroactive material and slow rate capabilities. The use of polymer coatings applied to both the electroactive material and the cathode as a whole have been successful in mitigating the dissolution of lithium polysulfides by confining the redox reactions to the cathode. Elemental sulfur is largely intractable in conventional solvents and suffers from poor chemical compatibility limiting synthetic modification. By incorporating S-S bonds into copolymeric materials the electrochemical reactivity of elemental sulfur can be maintained and allow these polymers to function as the electroactive cathode materials while enabling improved processability and properties via the comonomeric inclusions. The use of inverse vulcanization, which is the direct copolymerization of elemental sulfur, is highlighted as a facile method to prepare polymeric materials with a high content of S-S bonds for use as active cathode materials. The second chapter focuses on the synthesis and polymerization of a novel bifunctional monomer containing both a styrenic group to access free radical polymerization and a propylenedioxythiophene (ProDOT) to install conductive polymer pathways upon an orthogonal oxidative polymerization. The styrenic ProDOT monomer (ProDOT-Sty) was successfully applied to a two-step sequential polymerization where the styrenic group was first leveraged in a controlled radical polymerization (CRP) to afford well defined linear homo- and block polymer precursors with pendant electropolymerizable ProDOT moieties. Subsequent treatment of the these linear polymer precursors with an oxidant in solution enabled the oxidative polymerization of the pendant ProDOT groups to install conductive polythiophene inclusions. Although the synthesis and CRP of ProDOT-Sty was novel, the key advance in this work was successful demonstration that sequential radical and oxidative polymerizations could be carried out to install conductive polymer pathways through an otherwise nonconductive polymer matrix. The third chapter expands upon the use of ProDOT-Sty to install conductive polymer pathways through a sulfur copolymer matrix. The highly electrically insulating nature of elemental sulfur precludes its direct use as a cathode in Li-S batteries and thus the use of ProDOT-Sty in the preparation of a high sulfur content copolymer with conductive inclusions was targeted to improve electrical properties. Inverse vulcanization of elemental sulfur with ProDOT-Sty and a minimal amount of 1,3-diisopropenylbenzene (DIB) was first completed to afford a sulfur rich copolymer with electropolymerizable side chains. Subsequently, the improved processability of the sulfur copolymer was exploited to prepare thin polymer films on electrode surfaces. The poly(ProDOT-Sty-𝑐𝑜-DIB-𝑐𝑜-sulfur) (ProDIBS) films were then subjected to oxidizing conditions via an electrochemical cell to invoke electropolymerization of the ProDOT inclusions and install conductive poly(ProDOT) pathways. Evaluation of the electrical properties with electrochemical impedance spectroscopy (EIS) revealed that the charge transfer resistance was reduced from 148 kΩ to 0.4 kΩ upon installation of the conductive poly(ProDOT) corresponding to an improvement in charge conductance of more than 95%. This also represented a key advance in expanding the scope of the inverse vulcanization methodology as the first example of utilizing a comonomer with a functional side chain. The fourth chapter focuses on expanding the scope of the inverse vulcanization polymerization methodology to include aryl alkyne based comonomers and the application of new these new sulfur copolymers as active cathode materials in Li-S batteries. The early work on developing inverse vulcanization relied heavily on the use of DIB as one of the few comonomers amenable to bulk copolymerization with elemental sulfur. One of the principal limitations in comonomer selection for inverse vulcanization is the solubility of the comonomer in molten sulfur. Generally it has been observed that aromatic compounds with minimal polarity are miscible and thus common classes of comonomers such as acrylates and methacrylates are immiscible and preclude their compatibility with inverse vulcanization. It was found that aryl alkynes are a unique class of compounds that are both miscible with molten sulfur and provide reactivity with sulfur centered radicals through the unsaturated carbon-carbon triple bonds. Additionally, it was found that internal alkynes were best suited for inverse vulcanization to preclude abstraction of the somewhat acidic hydrogen from terminal alkynes. 1,4-Diphenylbutadiyne (DiPhDY) was selected as a prototypical comonomer of this class of compounds for preparing high sulfur content copolymers via inverse vulcanization. Poly(sulfur-𝑐𝑜-DiPhDY) was prepared with various compositions of S:DiPhDY and these copolymers were formulated into cathodes for electrochemical testing in Li-S batteries. The poly(S-𝑐𝑜-DiPhDY) based cathodes exhibited the best performance reported at the time for a polymeric cathode material with the figure of merit of the first inverse vulcanizate to enable a cycle lifetime of up to 1000 cycles. The fifth chapter details the preparation of composite materials composed of a sulfur or copolymeric sulfur matrix with molybdenum disulfide (MoS₂) inclusions and the use of these materials for Li-S cathodes with rapid charge/discharge rate capabilities. The higher order lithium polysulfide redox products (e.g., Li₂S₈ Li₂S₆) generated during Li-S cycling are soluble in the electrolyte solution of the battery. The rate capability of the Li-S battery is thus fundamentally limited by mass transfer as these electroactive species must diffuse back to the cathode surface in order to undergo further reduction (discharge) or oxidation (charge). In order to limit the effective diffusion length of the soluble lithium polysulfides and therefore mitigate the diffusion limited rate, composite materials with fillers capable of binding the lithium sulfides were prepared. MoS₂ was selected as the filler as simulations had indicated lithium polysulfide had a strong binding interaction with the surface of MoS₂. Furthermore, it was demonstrated for the first time that metal chalcogenides such as MoS₂ readily disperse in molten sulfur which enabled the facile preparation of the composite materials in situ. The composites were prepared by first dispersing MoS₂ in liquid sulfur or a solution of liquid sulfur and DIB below the floor temperature of S₈ (i.e.<160 °C). The dispersions were then heated above the floor temperature of S₈ to induce ring opening polymerization of the sulfur phase and afford the composites. The composites were found to be potent active cathode materials in Li-S batteries enabling extended cycle lifetimes of up to 1000 cycles with excellent capacity retention. Furthermore, the composite materials were successful in enhancing the rate capability of the Li-S cathodes where reversible capacity of >500 mAh/g was achieved at the rapid rate of 5C (i.e. a 12 min. charge or discharge time).
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Siqi [Verfasser]. "Post-Transcriptional Regulation Mechanisms of sRNA rnTrpL in S. meliloti and E. coli / Siqi Li." Gießen : Universitätsbibliothek, 2020. http://d-nb.info/1223461564/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Li/S"

1

Zhang, Huamin, Xianfeng Li, and Hongzhang Zhang. Li-S and Li-O2 Batteries with High Specific Energy. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-0746-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pint, A. A. Li Łubli Łu, nenavizhu, ili, Kak poladit £ s blizkimi li Łud £mi. Rostov-na-Donu: Feniks, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kazalište sjena: Ima li živih s ove strane konekcije? Rijeka: Adamić, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jakovenko, Gennadij Nikolaevič. Differencialʹnye uravnenija s fundamentalʹnymi rešenijami: Sofus Li i drugie. Moskva: Fizmatkniga, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li︠u︡bashevskiĭ, I︠U︡riĭ. Apologii︠a︡ PR, ili, Nado li samomu srazhatʹsi︠a︡ s killerom. Moskva: Russkai︠a︡ shkola PR, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Udovik, Vi︠a︡cheslav Afanasʹev. Byl li M. S. Voront︠s︡ov vragom A. A. Pushkina. Sankt Peterburg: Voront︠s︡ovskoe obshchestvo, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barnāmaj al-murashshāḥ (s): Khiṭṭah tafṣīlīyah li-tanmīyat Miṣr. [Cairo]: Dār al-Naṣr, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sofer, Moses. Liḳuṭe Ḥat. S.: Li-yeme ha-Ḥanukah : perushim u-veʼurim meluḳaṭim mi-kol sifre Ḥat. S. li-khevod Ḥanukah ... zemirot li-yeme ha-Ḥanukah ... ṿe-gam shir she-ḥiber ha-Ḥ. S. le-Ḥanukah. [Brooklyn, N.Y.]: Yiśraʼel Yoʼel Polaṭsheḳ, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Semenik, Dmitrii Gennad £evich. Prosti i otpusti: Kak perezhit £ rasstavanie s li Łubimym chelovekom. Moskva: Olma Media Grupp, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stoilo li roditsi︠a︡, ili, Ne lezʹ na sosnu s goloĭ zadnit︠s︡eĭ. Moskva: Novoe Literaturnoe Obozrenie, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Li/S"

1

Crittenden, Mark. "Commercial Markets for Li-S." In Lithium-Sulfur Batteries, 275–87. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119297895.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Huamin, Xianfeng Li, and Hongzhang Zhang. "Li–S and Li–O2 Batteries with High Specific Energy." In SpringerBriefs in Molecular Science, 1–48. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0746-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Patel, Manu U. M., Rezan Demir Cakan, Mathieu Morcrette, Jean-Marie Tarascon, Miran Gaberscek, and Robert Dominko. "Analytical Techniques for Li-S Batteries." In Ceramic Engineering and Science Proceedings, 1–9. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118217535.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Watanabe, Masayoshi. "Outline of Li–S Battery Project." In Next Generation Batteries, 273–75. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Watanabe, Masayoshi. "Li–S Battery Using Li2S Cathode." In Next Generation Batteries, 403–14. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peng, Shengjie, and P. Robert Ilango. "Electrospinning of Nanofibers for Li–S Battery." In Electrospinning of Nanofibers for Battery Applications, 101–20. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1428-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

He, Xiang Ming, Wei Hua Pu, Jian Jun Li, Chang Yin Jiang, Chun Rong Wan, and Shi Chao Zhang. "Nano Sulfur Composite for Li/S Polymer Secondary Batteries." In Key Engineering Materials, 541–44. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar Mishra, Raghvendra, Aswathy Vasudevan, and Sabu Thomas. "An Overview on Li-S Battery and its Challenges." In Applied Physical Chemistry with Multidisciplinary Approaches, 135–57. Toronto : Apple Academic Press, 2018. | Series: Innovations in physical chemistry. Monograph series: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781315169415-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ryu, Ho Suk, Jae Won Choi, Jou Hyeon Ahn, Gyu Bong Cho, and Hyo Jun Ahn. "The Electrochemical Properties of Poly(acrylonitrile) Polymer Electrolyte for Li/S Battery." In Materials Science Forum, 50–53. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-995-4.50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Chun-Hui. "Interval-Valued Intuitionistic (T, S)-Fuzzy LI-Ideals in Lattice Implication Algebras." In Quantitative Logic and Soft Computing 2016, 337–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46206-6_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Li/S"

1

Mourembles, Delphine, Brandon Buergler, Laurent Gajewski, Ashley Cooke, and Celine Barchasz. "Li-S Cells for Space Applications (LISSA)." In 2019 European Space Power Conference (ESPC). IEEE, 2019. http://dx.doi.org/10.1109/espc.2019.8931976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Şahin, Büşra, Hilal Köse, Şeyma Dombaycıoğlu, and Ali Osman Aydın. "Free-Standing S-CNT-rGO Nanocomposite Paper Cathodes for Li-S Batteries." In The 5th World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2019. http://dx.doi.org/10.11159/iccpe19.122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Selvi, S. Sharmila Deva, S. Sree Vivek, and C. Pandu Rangan. "Cryptanalysis of Li et al.'s Identity-Based Threshold Signcryption Scheme." In 2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 2008. http://dx.doi.org/10.1109/euc.2008.187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaisar, N., S. Jou, and C. W. Chu. "Achieving Fast Charging and Long-life Li-S Battery via Li passivated MoO 3 NR decorated Celgard Separator." In 2019 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2019. http://dx.doi.org/10.7567/ssdm.2019.c-3-05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mihailovic, D. "The Strongly Correlated 1D Spin State in Li-doped Mo-S Nanotubes." In MOLECULAR NANOSTRUCTURES: XVII International Winterschool Euroconference on Electronic Properties of Novel Materials. AIP, 2003. http://dx.doi.org/10.1063/1.1628061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dive, Aniruddha, Ramiro Gonzalez, and Soumik Banerjee. "Graphene/Sulfur and Graphene Oxide/Sulfur Composite Cathodes for High Performance Li-S Batteries: A Molecular Dynamics Study." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67590.

Full text
Abstract:
Lithium – sulfur (Li-S) battery, with theoretical capacity (∼1675 mAh/g) and energy density comparable to that of gasoline, is a promising technology meeting the demands of next-generation electric vehicles. However, the Li-S battery hasn’t been able to reach the theoretically predicted capacity due to several limitations, which include low electrical conductivity of pure sulfur cathode and loss of active material due to dissolution of intermediate polysulfides from the cathode during repetitive charge – discharge cycling referred commonly as “polysulfide shuttle”. Graphene/Graphene oxide (GO) are being explored as cathodes/cathode supports for Li-S batteries to alleviate these problems. We have employed molecular dynamics simulations to calculate the density distributions of polysulfides (S82−) in dimethoxy ethane (DME) – 2, 4 – dioxalane (DOL) electrolyte (1:1 v/v) in the vicinity of different graphene and GO structures, in order to study the impact of hydroxyl functional groups in GO on anchoring polysulfides. Density distribution of polysulfides provides valuable insight on the role of functional groups in successful anchoring of polysulfides onto the GO cathode supports structures.
APA, Harvard, Vancouver, ISO, and other styles
7

Malacco, Hugo Oliveira Rodrigues Poley, and Ambrósio Florêncio de Almeida. "PRODUÇÃO DE UM CÁTODO DE POLIANILINA-ENXOFRE PARA APLICAÇÃO EM BATERIAS DE Li-S." In Anais do I Web Encontro Nacional de Engenharia Química. Recife, Brasil: Even3, 2021. http://dx.doi.org/10.29327/138535.1-31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fotouhi, A., S. Longo, D. J. Auger, and K. Propp. "Electric Vehicle Battery Parameter Identification and SOC Observability Analysis: NiMH and Li-S Case Studies." In 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016). Institution of Engineering and Technology, 2016. http://dx.doi.org/10.1049/cp.2016.0142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mian, A., C. Taylor, H. Vijwani, K. Hartke, S. Mukhopadhyay, and L. Dosser. "Microstructural Analysis of Laser Micro-Welds Between Electrode Materials for Li-Ion Battery Applications." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64689.

Full text
Abstract:
Currently used ultrasonic welded joints for assembly and packaging of Li-Ion batteries have reliability concerns for automotive applications, as the battery is subjected to vibration and other mechanical loads. The sealing of the battery can is very critical for safety. Due to battery weld failures in recent years, the postal service has put ban on shipping Li-ion batteries via regular mail. A laser based alternative joining technology has the potential to offer robust, fast and cost-effective processing of Li-Ion batteries. Before the technology can be fully implemented, it is imperative to understand the effects of various process parameters on the robustness of the weld. In the present analysis, a preliminary study is performed to understand the effect of laser scanning speed on the micro-structural and physical characteristics of the materials in the weld area that ultimately affect the bond quality. Samples are created by welding aluminum and copper in lap shear configuration using a continuous wave fiber laser. Two sets of samples are created using a laser power of 225 W; however, the scanning speeds are 300 mm/s and 400 mm/s. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDAX) are performed in the weld area to understand the microstructural and physical characteristics of the joint that may have been affected by the processing parameters.
APA, Harvard, Vancouver, ISO, and other styles
10

Hoashi, Eiji, Sachiko Yoshihashi-Suzuki, Takafumi Okita, Takuji Kanemura, Hiroo Kondo, Nobuo Yamaoka, and Hiroshi Horiike. "Study on Formation and Development of Surface Wave of Liquid Metal Lithium Jet for IFMIF." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16689.

Full text
Abstract:
The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The liquid metal Lithium (Li) jet with a free surface is planned as a target irradiated by two deuteron beam to generate intense neutrons and it is thus important to obtain information on the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University (Li loop) and numerically using computational fluid dynamics (CFD) code, FLUENT. The CFD simulation has been used in order to establish the mechanism of the formation and development of the surface wave of the liquid Li jet. The introduction of a two-staged contraction nozzle is planned in the IFMIF and the 1/2.5 size of the IFMIF’s nozzle has been also used and tested in our Li loop. These nozzles have a concave wall at each contraction part, and it was then predicted that Görtler vortices in the boundary layer inside the nozzle was generated and flowed out from the nozzle exit at the high velocity condition in our previous simulation. The Li free surface flow simulation including the flow inside the nozzle set in our Li loop was conducted to compare simulation results with experimental results and to evaluate the influence of Görtler vortices on the surface wave formation and development. In our simulation, large eddy simulation and volume of fluid models are used as turbulence model and interface tracking method, respectively. Our simulation result indicates that both transverse vortices due to gas-liquid shear stress and longitudinal vortices induced by Görtler vortices downstream the nozzle exit contribute to the formation of three-dimensional wave of the Li free surface flow at the velocity of 15 m/s. It was found that the vortex structure and the flow pattern under the free surface due to the flow inside the nozzle strongly contributed the development of the surface wave of the liquid Li jet.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Li/S"

1

McBrayer, Josefine D. Data for Li-S Rate Comparison. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1562405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumta, Prashant N., Moni K. Datta, Oleg Velikokhatnyi, Pavithra Murugavel Shanthi, and Bharat Gattu. A New Lamination and doping Concepts for Enhanced Li – S Battery Performance. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1417532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gross, M. E., E. S. Mast, J. P. Lemmon, and R. L. Pearson III. Development of an Anode Stabilization Layer for High Energy Li-S Cells for Electric Vehicles. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1038137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jen, Alex, and Jihui Yang. Multifunctional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity Sulfur Cathodes in Li-S Batteries. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1725759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography