To see the other types of publications on this topic, follow the link: Li4SiO4.

Journal articles on the topic 'Li4SiO4'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Li4SiO4.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gong, Yichao, Lin Liu, Jianqi Qi, et al. "A comprehensive study on Li4Si1−xTixO4 ceramics for advanced tritium breeders." Journal of Advanced Ceramics 9, no. 5 (2020): 629–40. http://dx.doi.org/10.1007/s40145-020-0419-0.

Full text
Abstract:
Abstract Hetero-element doped lithium orthosilicates have been considered as advanced tritium breeders due to the superior performances. In this work, Li4Si1−xTixO4 ceramics were prepared by proprietary hydrothermal process and multistage reactive sintering. The reaction mechanism of Li4Si1−xTixO4 was put forward. XRD and SEM analyses indicate that insertion of Ti leads to lattice expansion, which promotes the grain growth and changes the fracture mode. The compressive tests show that the crush load increases almost four times by increasing x from 0 to 0.2. However, the thermal conductivity an
APA, Harvard, Vancouver, ISO, and other styles
2

Shan, Shao Yun, Qing Ming Jia, Li Hong Jiang, and Ya Ming Wang. "Effect of Different Silicon Sources on CO2 Absorption Properties of Li4SiO4 at High Temperature." Advanced Materials Research 213 (February 2011): 515–18. http://dx.doi.org/10.4028/www.scientific.net/amr.213.515.

Full text
Abstract:
Using cheap and porous diatomite or zeolite as silicon sources, we prepared firstly Li4SiO4 matetials for high temperature CO2 capture through solid-state method, and mainly investigated effects of silicon sources on the CO2 absorption properties of Li4SiO4 materials. Phase composition was analyzed by X-ray diffraction, and the CO2 absorption properties were studied by the simultaneous thermal thermogravimetric analyzer (TG-DSC). The results showed that Li4SiO4 materials using zeolite as silicon source showed little CO2 absorption properties, while Li4SiO4 materials using diatomite as silicon
APA, Harvard, Vancouver, ISO, and other styles
3

Yan, Xianyao, Yingjie Li, Xiaotong Ma, Jianli Zhao, and Zeyan Wang. "Performance of Li4SiO4 Material for CO2 Capture: A Review." International Journal of Molecular Sciences 20, no. 4 (2019): 928. http://dx.doi.org/10.3390/ijms20040928.

Full text
Abstract:
Lithium silicate (Li4SiO4) material can be applied for CO2 capture in energy production processes, such as hydrogen plants, based on sorption-enhanced reforming and fossil fuel-fired power plants, which has attracted research interests of many researchers. However, CO2 absorption performance of Li4SiO4 material prepared by the traditional solid-state reaction method is unsatisfactory during the absorption/regeneration cycles. Improving CO2 absorption capacity and cyclic stability of Li4SiO4 material is a research highlight during the energy production processes. The state-of-the-art kinetic an
APA, Harvard, Vancouver, ISO, and other styles
4

Guan, Qiushi, Tao Gao, Yanhong Shen та ін. "First-principles study of electronic, dynamical and thermodynamic properties of γ-Li4SiO4". International Journal of Modern Physics B 29, № 18 (2015): 1550128. http://dx.doi.org/10.1142/s0217979215501283.

Full text
Abstract:
We have studied the structural, electronic and dynamic properties of γ- Li4SiO4(lithium orthosilicate) using density functional theory (DFT) with the generalized gradient approximation (GGA). The crystal structure is fully relaxed. The electronic band structure and Density of States (DOS) calculations indicate that γ- Li4SiO4is an insulator with an indirect band gap of 5.19 eV and it has a conduction band with the width of 5.92 eV and two valance bands with the width of 4.45 eV and 0.57 eV, respectively. In the partial DOS, Li and Si electronic densities increase more sharply than O atoms. Com
APA, Harvard, Vancouver, ISO, and other styles
5

Zhai, You Wen, Jin Hu, Xiao Qin Zhu, Kai Jun Wang, and Wei Jun Zhang. "Preparation and Characterization of Lithium Orthosilicate Ceramic Pebbles by Melt Spraying Method." Key Engineering Materials 697 (July 2016): 818–21. http://dx.doi.org/10.4028/www.scientific.net/kem.697.818.

Full text
Abstract:
This paper studied the experimental procedures,, test equipment and test methodology of the melt spraying method. Meanwhile, according to performance index of lithium orthosilicate (Li4SiO4) ceramic pebbles to optimize the melt spraying method. Test analysis of the diameter of orthosilicate pebbles, degree of spheroid of orthosilicate pebbles, surface topography of orthosilicate pebbles, metallographic structure of orthosilicate pebbles, section morphology, crushing strength and phase composition. Results in this work indicate that the lithium orthosilicate (Li4SiO4) ceramic pebbles with a fla
APA, Harvard, Vancouver, ISO, and other styles
6

Kinjyo, Tomohiro, and Masabumi Nishikawa. "Tritium Release Behavior from Li4SiO4." Fusion Science and Technology 46, no. 4 (2004): 561–70. http://dx.doi.org/10.13182/fst04-a591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xiang, Mao Qiao, Ying Chun Zhang, Yun Zhang, Chao Fu Wang, and Yong Hong Yu. "Preparation of Li4SiO4 Ceramic Pebbles by Agar Method Using Li2SiO3 and Li2CO3 as Raw Materials." Key Engineering Materials 697 (July 2016): 814–17. http://dx.doi.org/10.4028/www.scientific.net/kem.697.814.

Full text
Abstract:
Lithium-containing ceramic pebbles, the likeliest tritium breeders in the future, are needed in the fusion reactor blankets. Currently, lithium orthosilicate (Li4SiO4) has been widely studied for tritium breeding pebble as it has 1250 °C melting temperature, 0.54 g/cm3 lithium concentration, and excellent tritium release performance. For simplifying reaction mechanism and the preparation technology to tailor the properties, the Li4SiO4 breeders were produced with an agar-gel technology using stable and cheap lithium metasilicate and lithium carbonate as starting materials. In addition, the sol
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Linjie, Qiushi Guan, Jiamao Li, et al. "First-principles study on the structural and electronic properties of Li4SiO4 and Al-doped Li4SiO4." Fusion Engineering and Design 113 (December 2016): 331–35. http://dx.doi.org/10.1016/j.fusengdes.2016.03.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reimann, J., and G. Wörner. "Thermal creep of Li4SiO4 pebble beds." Fusion Engineering and Design 58-59 (November 2001): 647–51. http://dx.doi.org/10.1016/s0920-3796(01)00513-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Mao, Yichao Gong, Guangming Ran, et al. "Tritium release behavior of Li4SiO4 and Li4SiO4 + 5 mol% TiO2 ceramic pebbles with small grain size." Journal of Nuclear Materials 514 (February 2019): 284–89. http://dx.doi.org/10.1016/j.jnucmat.2018.12.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kawamura, Y., M. Nishikawa, and K. Tanaka. "Adsorption characteristics of water vapor on Li4SiO4." Journal of Nuclear Materials 208, no. 3 (1994): 308–12. http://dx.doi.org/10.1016/0022-3115(94)90340-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lo Frano, Rosa, and Monica Puccini. "Preliminary investigation of Li4SiO4 pebbles structural performance." Fusion Engineering and Design 167 (June 2021): 112388. http://dx.doi.org/10.1016/j.fusengdes.2021.112388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Jun Heng, Rong Hua Huang, and Hao Ran Cao. "A Conceptual Study on Helium-Cooled Solid Breeder Blanket for Prototype CH DEMO." Advanced Materials Research 724-725 (August 2013): 677–80. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.677.

Full text
Abstract:
A conceptual design of tritium-breeder blanket for prototype DEMO is introduced. In this concept, Li4SiO4 pebbles are chosen as tritium-breeder material and Be for neutron multiplication. To confirm the thermal effectiveness,a CFD code FLUENT is used for the calculation. The result indicated that, the thermal effectiveness of the concept is acceptable.
APA, Harvard, Vancouver, ISO, and other styles
14

Huang, Yuan Feng, Hua Tang, Jun Li, et al. "Preparation of Lithium Orthosilicate Ceramic Pebbles by Molten Spray Method Process." Advanced Materials Research 412 (November 2011): 111–15. http://dx.doi.org/10.4028/www.scientific.net/amr.412.111.

Full text
Abstract:
Lithium orthosilicate (Li4SiO4) ceramic pebbles was prepared by molten spray process, using lithium carbonate (Li2CO3) and silica (SiO2) as raw material. The XRD experimental investigation results showed that the main crystal phase of the ceramic pebbles is Li4SiO4with small amount of impurity phase, Li2SiO3, and some unreacted SiO2. The average pebbles size is 0.22mm. The sphericity of the pebble is 99%.
APA, Harvard, Vancouver, ISO, and other styles
15

Kashimura, Hideaki, Masabumi Nishikawa, Kazunari Katayama, et al. "Mass loss of Li2TiO3 pebbles and Li4SiO4 pebbles." Fusion Engineering and Design 88, no. 9-10 (2013): 2202–5. http://dx.doi.org/10.1016/j.fusengdes.2013.05.098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Vollath, D., H. Wedemeyer, E. Günther, and H. Elbel. "Semi-industrial production of li4sio4 powder and spheres." Fusion Engineering and Design 8 (January 1989): 415–19. http://dx.doi.org/10.1016/s0920-3796(89)80141-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

SEINO, Y., K. TAKADA, B. KIM, et al. "Synthesis and electrochemical properties of Li2S–B2S3–Li4SiO4." Solid State Ionics 177, no. 26-32 (2006): 2601–3. http://dx.doi.org/10.1016/j.ssi.2006.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Iwamoto, Nobuya, Norimasa Umesaki, Masanari Takahashi, Masahiro Tatsumisago, Tsutomu Minami, and Yoshihito Matsui. "Molecular dynamics simulation of Li4SiO4 melt and glass." Journal of Non-Crystalline Solids 95-96 (December 1987): 233–40. http://dx.doi.org/10.1016/s0022-3093(87)80115-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yang, Mao, Linjie Zhao, Yi Qin, et al. "Tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics." Journal of Nuclear Materials 538 (September 2020): 152268. http://dx.doi.org/10.1016/j.jnucmat.2020.152268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chang, C. C., C. C. Wang, and P. N. Kumta. "Chemical synthesis and characterization of lithium orthosilicate (Li4SiO4)." Materials & Design 22, no. 7 (2001): 617–23. http://dx.doi.org/10.1016/s0261-3069(01)00024-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Noda, K., Y. Ishii, T. Nakazawa, et al. "Radiation damage in pure and Al-doped Li4SiO4." Journal of Nuclear Materials 191-194 (September 1992): 248–52. http://dx.doi.org/10.1016/s0022-3115(09)80044-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kinjyoa, Tomohiro, Masabumi Nishikawaa, Kazunari Katayamaa, Takaaki Tanifujib, Mikio Enoedac, and Sergey Beloglazovd. "Release Behavior of Bred Tritium from Irradiated Li4SiO4." Fusion Science and Technology 48, no. 1 (2005): 646–49. http://dx.doi.org/10.13182/fst05-a1008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cruz, Daniel, and Silvia Bulbulian. "Synthesis of Li4SiO4 by a Modified Combustion Method." Journal of the American Ceramic Society 88, no. 7 (2005): 1720–24. http://dx.doi.org/10.1111/j.1551-2916.2005.00262.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Basu, Bharati, H. S. Maiti, and A. Paul. "Lithium Ion Conductivity in the System Li4SiO4-Li3VO4." Transactions of the Indian Ceramic Society 44, no. 5 (1985): 97–100. http://dx.doi.org/10.1080/0371750x.1985.10822752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jing-Kui, Liang, and Zhang Yu-Ming. "Studies on Li2SO4-MgSO4 and Li2SO4-Li4SiO4 systems." Acta Chimica Sinica 4, no. 2 (1986): 123–32. http://dx.doi.org/10.1002/cjoc.19860040204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Takahashi, Masanari, Hiroshi Toyuki, Masahiro Tatsumisago, and Tsutomu Minami. "Raman spectra of rapidly quenched Li4SiO4Li2WO4 glasses." Journal of Non-Crystalline Solids 107, no. 2-3 (1989): 330–33. http://dx.doi.org/10.1016/0022-3093(89)90481-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

NODA, K. "Radiation damage in pure and Al-doped Li4SiO4." Journal of Nuclear Materials 191-194 (September 1992): 248–52. http://dx.doi.org/10.1016/0022-3115(92)90764-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yang, Jian, Yingxue Hu, and Qiuwang Wang. "Investigation of Effective Thermal Conductivity for Ordered and Randomly Packed Bed with Thermal Resistance Network Method." Energies 12, no. 9 (2019): 1666. http://dx.doi.org/10.3390/en12091666.

Full text
Abstract:
In the present paper, the effective thermal conductivities of Li4SiO4-packed beds with both ordered and random packing structures were investigated using thermal resistance network methods based on both an Ohm’s law model and a Kirchhoff’s law model. The calculation results were also validated and compared with the numerical and experimental results. Firstly, it is proved that the thermal resistance network method based on the Kirchhoff’s law model proposed in the present study is reliable and accurate for prediction of effective thermal conductivities in a Li4SiO4-packed bed, while the result
APA, Harvard, Vancouver, ISO, and other styles
29

Bühler, L., J. Reimann, E. Arbogast, and K. Thomauske. "Mechanical behavior of Li4SiO4 in a blanket typical geometry." Fusion Engineering and Design 49-50 (November 2000): 499–505. http://dx.doi.org/10.1016/s0920-3796(00)00257-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

TAO, Y., D. YI, and J. LI. "Electrochemical formation of crystalline Li3VO4/Li4SiO4 solid solutions film." Solid State Ionics 179, no. 40 (2008): 2396–98. http://dx.doi.org/10.1016/j.ssi.2008.09.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kang, Chunmei, Chengjian Xiao, Xiaolin Wang, et al. "Effect of water adsorption on tritium release from Li4SiO4." Journal of Nuclear Materials 432, no. 1-3 (2013): 455–59. http://dx.doi.org/10.1016/j.jnucmat.2012.08.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Adnan, S. B. R. S., and N. S. Mohamed. "Citrate sol–gel synthesised Li4SiO4: conductivity and dielectric behaviour." Materials Research Innovations 16, no. 4 (2012): 281–85. http://dx.doi.org/10.1179/1433075x12y.0000000012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kim, Hanseul, and Young-Il Kim. "Partial nitridation of Li4SiO4 and ionic conductivity of Li4.1SiO3.9N0.1." Ceramics International 44, no. 8 (2018): 9058–62. http://dx.doi.org/10.1016/j.ceramint.2018.02.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dissanayake, M. A. K. L., and Anthony R. West. "Structure and conductivity of an Li4SiO4–Li2SO4solid solution phase." J. Mater. Chem. 1, no. 6 (1991): 1023–25. http://dx.doi.org/10.1039/jm9910101023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hu, Yingchao, Mingyu Qu, Hailong Li, et al. "Porous extruded-spheronized Li4SiO4 pellets for cyclic CO2 capture." Fuel 236 (January 2019): 1043–49. http://dx.doi.org/10.1016/j.fuel.2018.09.072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Aceves, J. M., and A. R. West. "Effect of voltage on the AC conductivity of Li4SiO4." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 194, no. 1 (1985): 139–42. http://dx.doi.org/10.1016/0022-0728(85)87012-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yamawaki, Michio, Atsushi Suzuki, Masaru Yasumoto, and Kenji Yamaguchi. "Effect of sweep gas chemistry on vaporization of Li4SiO4." Journal of Nuclear Materials 223, no. 1 (1995): 80–83. http://dx.doi.org/10.1016/0022-3115(94)00701-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Buelens, L. C., Hilde Poelman, Christophe Detavernier, Guy B. Marin, and Vladimir V. Galvita. "CO2 sorption properties of Li4SiO4 with a Li2ZrO3 coating." Journal of CO2 Utilization 34 (December 2019): 688–99. http://dx.doi.org/10.1016/j.jcou.2019.08.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wu, Xiangwei, Zhaoyin Wen, Xiaogang Xu, and Yu Liu. "Fabrication of Li4SiO4 pebbles by a sol–gel technique." Fusion Engineering and Design 85, no. 2 (2010): 222–26. http://dx.doi.org/10.1016/j.fusengdes.2010.01.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chen, Xiaoxiang, Zhuo Xiong, Yadi Qin, et al. "High-temperature CO2 sorption by Ca-doped Li4SiO4 sorbents." International Journal of Hydrogen Energy 41, no. 30 (2016): 13077–85. http://dx.doi.org/10.1016/j.ijhydene.2016.05.267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Schauer, V., and G. Schumacher. "Study of adsorption and desorption of water on Li4SiO4." Journal of Nuclear Materials 167 (September 1989): 225–30. http://dx.doi.org/10.1016/0022-3115(89)90445-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Aslam, Mahreen, and Xiang Yang Kong. "A lithium ion conductor in Li4SiO4-Li3PO4-LiBO2 ternary system." Solid State Ionics 293 (October 2016): 72–76. http://dx.doi.org/10.1016/j.ssi.2016.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Feng, Y. J., K. M. Feng, Q. X. Cao, J. Hu, and H. Tang. "Fabrication and characterization of Li4SiO4 pebbles by melt spraying method." Fusion Engineering and Design 87, no. 5-6 (2012): 753–56. http://dx.doi.org/10.1016/j.fusengdes.2012.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhao, Shuo, Yixiang Gan, and Marc Kamlah. "Failure initiation and propagation of Li4SiO4 pebbles in fusion blankets." Fusion Engineering and Design 88, no. 1 (2013): 8–16. http://dx.doi.org/10.1016/j.fusengdes.2012.09.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Carella, E., та T. Hernández. "The effect of γ-radiation in Li4SiO4 ceramic breeder blankets". Fusion Engineering and Design 90 (січень 2015): 73–78. http://dx.doi.org/10.1016/j.fusengdes.2014.11.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kawakami, Y., H. Ikuta, T. Uchida, and M. Wakihara. "Ionic conduction of lithium in Li2SSiS2Li4SiO4 glass system." Thermochimica Acta 299, no. 1-2 (1997): 7–12. http://dx.doi.org/10.1016/s0040-6031(97)00129-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gao, Xiaoling, Xiaojun Chen, Mei Gu, Chengjian Xiao, and Shuming Peng. "Fabrication and characterization of Li4SiO4 ceramic pebbles by wet method." Journal of Nuclear Materials 424, no. 1-3 (2012): 210–15. http://dx.doi.org/10.1016/j.jnucmat.2012.02.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Ke, Chunlei Wang, Zhongyun Zhou, Zhiwei Lin, and Pengfei Zhao. "Synthesis of LiF-Containing Li4SiO4 as Highly Efficient CO2 Sorbents." Industrial & Engineering Chemistry Research 57, no. 23 (2018): 8085–92. http://dx.doi.org/10.1021/acs.iecr.8b01175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yang, Mao, Guangming Ran, Hailiang Wang, et al. "Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics." Journal of Nuclear Materials 503 (May 2018): 151–56. http://dx.doi.org/10.1016/j.jnucmat.2018.02.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Luo, Tianyong. "XPS analysis on chemical states of Li4SiO4 irradiated by 3keV." Journal of Nuclear Materials 408, no. 1 (2011): 7–11. http://dx.doi.org/10.1016/j.jnucmat.2010.10.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!