Academic literature on the topic 'Liang zi li xue'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liang zi li xue.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Liang zi li xue"

1

Lin, Yan, Jinyan Zhang, Xiaoli Liao, et al. "Abstract 5395: DNA damage repair gene mutations predict the efficacy of platinum-based chemotherapy in colorectal cancer." Cancer Research 82, no. 12_Supplement (2022): 5395. http://dx.doi.org/10.1158/1538-7445.am2022-5395.

Full text
Abstract:
Abstract Background: DNA damage repair (DDR) mutations are known to predict response to platinum-based chemotherapy in multiple solid tumors. However, their predictive value remained unknown in patients with colorectal cancer. Methods: The genomic and survival datas from the TCGA-COAD and TCGA-READ cohorts of patients receiving platinum-based chemotherapy were used to analyze the predictive value of DDR mutations on platinum-based chemotherapy. Result: The DDR genes were commonly mutated (85.82%) in the TCGA-COAD and TCGA-READ cohorts. The objective response rates (ORRs) were 80% for the patients with DDR mutations (DDRmut) subgroup and 56% for the DDR wild-type (DDRwt) subgroup (P<0.05), and the disease control rates (DCRs) were 86% for the DDRmut subgroup and 56% for the DDRwt subgroup (P<0.05). In patients with stage I, II and III colorectal cancer, there was no significant difference in the overall survival (OS) between DDRmut subgroup and DDRwt subgroup (Hazard Ratio=0.48, 95%CI 0.1−2.31, log-rank P=0.35). In patients with stage IV colorectal cancer, the OS was significantly better among the DDRmut patients than in the DDRwt subgroup (Hazard Ratio=0.21, 95%CI 0.06−0.8, P= 0.011). Conclusions: DDR mutations may serve as a positive predictor of platinum-based chemotherapy therapy in patients with CRC and their clinical value warrants further investigation. Citation Format: Yan Lin, Jinyan Zhang, Xiaoli Liao, Yumei Zhang, Min Luo, Qian Li, Mingzhi Xie, Chaoyong Liang, Sina Liao, Yating Zheng, Xue Hu, Mengli Huang, Rong Liang, Yongqiang Li. DNA damage repair gene mutations predict the efficacy of platinum-based chemotherapy in colorectal cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5395.
APA, Harvard, Vancouver, ISO, and other styles
2

Vigneron, Frank. "New frontier: Three painters from Shenzhen and their relation with the Hong Kong art market." Journal of Contemporary Painting 7, no. 1 (2021): 177–98. http://dx.doi.org/10.1386/jcp_00030_1.

Full text
Abstract:
Drawn towards Hong Kong because of what appears to be a thriving art market, many artists from the People’s Republic of China are now looking towards Shenzhen, the Special Economic Zone created nearby in the 1980s, for conducting their practices. Launched as an economic testing ground by Deng Xiaping, Shenzhen is now experiencing new and profound changes. The development of new art institutions has been the reason for the emergence of an art scene that is fostering the creation of original art practices, especially in the field of painting. This article takes as example three practitioners and explains the reasons why they have chosen to live there and how they are negotiating their position from this city within the local art ecology as well as the art market of Hong Kong. The first of these artists, Liang Quan (), has lived in Shenzhen since the 1990s and is a representative of contemporary forms of literati painting, while the other two, Zhou Li () and Xue Feng (), are more recent arrivals who are both abstract painters engaging sometimes in the creation of installations and public art projects. To better understand the position of these artists towards the demands of an art market, this article will also explain how the idea of commoditization, which was so repellent to the practitioners of institutional critique in the Euro-American context of the 1960s and 1970s, has not been experienced in Mainland China in quite the same way.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhu, Yuelin. "Li Zhang. Xin Zhongguo yu xin ke xue: gao fen zi xue zai xian dai Zhongguo de jian li [New Science for a New China: Institutionalization of Polymer Science in the P. R. China]. (Zhongguo jin xian dai ke xue ji shu shi yan jiu cong shu.). 340 pp., tables, bibl., index. Jinan: Shandong jiao yu chu ban she [Shandong Education Press], 2005. ¥37.50 (paper)." Isis 99, no. 2 (2008): 446–47. http://dx.doi.org/10.1086/591385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McCarthy, Joseph G. "Distraction Osteogenesis in Correction of Micrognathia Accompanying Obstructive Sleep Apnea Syndrome; Xing Wang, M.D., Ph.D., Xiao-Xia Wang, Ph.D., D.D.S., Cheng Liang, D.D.S., M.S., Biao Yi, M.D., D.D.S., Ye Lin, Ph.D., D.D.S., and Zi-Li Li, M.D., D.D.S." Plastic and Reconstructive Surgery 112, no. 6 (2003): 1558–59. http://dx.doi.org/10.1097/01.prs.0000085821.72990.29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qian, Kun, Bin Hu, Ming He, et al. "Abstract 5499: Efficacy of icotinib as adjuvant therapy for patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma: a multicenter, open-label, single-arm, phase II study (ICAPE)." Cancer Research 82, no. 12_Supplement (2022): 5499. http://dx.doi.org/10.1158/1538-7445.am2022-5499.

Full text
Abstract:
Abstract Background: Currently, epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have been proved to significantly improve the clinical outcome of patients with EGFR-mutant non-small-cell lung cancer (NSCLC). Icotinib is an oral, reversible and selective first-generation EGFR-TKI. The survival benefits of 1-year and 2-year adjuvant icotinib in patients with EGFR-mutant NSCLC have been confirmed in previous studies. However, the optimal duration of adjuvant icotinib remains unknown. This study (ICAPE) evaluated the efficacy of 1.5-year adjuvant therapy with icotinib for patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma. Methods: Patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma were enrolled in the multicenter, open-label, single-arm, phase II study. Eligible patients received oral icotinib 125 mg thrice daily for 1.5 years after complete surgical resection. Primary endpoint was disease-free survival (DFS). Secondary endpoints included 1-year, 3-year, as well as 5-year OS rates, and the DFS according to the BIM mutation status (mutant-type and wild-type) and EGFR mutation types (19 del and 21 L858R). Results: Between March 2014 and January 2018, 79 patients were enrolled. The median follow-up time was 39.7 months with a median DFS and overall survival (OS) of 41.4 months (95% CI: 33.6-51.8) and 67.0 months (95% CI: 21.2-not reached [NR]), respectively. The 1-year, 3-year and 5-year OS rates were 100%, 83.3%, and 61.7%, respectively. No significant difference was found in the median DFS between patients with Bcl-2 interacting mediator of cell death (BIM) mutant-type and wild-type (NR vs. 41.7 months; p=0.75) and no significant difference was found in the median DFS according to EGFR mutation types (all p>0.05). Conclusions: The phase II ICAPE study demonstrated that 1.5-year adjuvant therapy with icotinib had a favorable survival benefit in patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma with a long median DFS and high 5-year OS rates which is consistent with other icotinib’s study. Icotinib is suggested to be used as an adjuvant therapy option in IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma. Citation Format: Kun Qian, Bin Hu, Ming He, Zi-Tong Wang, Yu Liu, Hua-Gang Liang, Zhi-Yong Su, Yu-Shang Cui, Li-Jun Liu, Yi Zhang. Efficacy of icotinib as adjuvant therapy for patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma: a multicenter, open-label, single-arm, phase II study (ICAPE) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5499.
APA, Harvard, Vancouver, ISO, and other styles
6

Chung, Juliette Yuehtsen. "Bo Liang. Ji shu yu di guo yi yan jiu: riben zai Zhongguo de zhi min ke yan ji gou [Researches on Technology and Imperialism: Japanese Colonial Scientific Research Institutes in China]. (Zhongguo jin xian dai ke xue ji shu shi yan jiu cong shu.). 345 pp., figs., tables, bibl., index. Jinan: Shandong jiao yu chu ban she [Shandong Education Press], 2006. ¥38 (paper).Jianping Han;, Xingsui Cao;, Liwei Wu. Ri wei shi qi de zhi min di ke yan ji gou: li shi yu wen xian [Colonial Scientific Institutions during the Japanese Occupation and Puppet Manchukuo Period: History and Literature]. (Zhongguo jin xian dai ke xue ji shu shi yan jiu cong shu.). 468 pp., figs., bibl., index. Jinan: Shandong jiao yu chu ban she [Shandong Education Press], 2006. ¥49 (paper)." Isis 99, no. 2 (2008): 429–30. http://dx.doi.org/10.1086/591369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thi Van Anh, Nguyen, Le Hong Luyen, Nguyen Thi Minh Hang, Vu Thi Thom, and Bui Thanh Tung. "Compounds Isolated from the Ethyl Acetate Fraction of Canna edulis Ker Gawl Rhizomes." VNU Journal of Science: Medical and Pharmaceutical Sciences 37, no. 2 (2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4291.

Full text
Abstract:
Three compounds were isolated from the rhizome part of Canna edulis for the first time including liquiritigenin, methyl caffeate and uracil. Their structures were elucidated by spectroscopic methods as MS and NMR.
 Keywords
 Canna edulis Ker Gawl, liquiritigenin, methyl caffeate, uracil.
 References
 [1] T. H. Vu, Q. U. Le, Edible Canna (Canna edulis Ker), A Potential Crop for Vietnam Food Industry, International Journal of Botany Studies, Vol. 4, No. 4, 2019, pp. 58–59.[2] N. Tanakar, The Utilization of Edible Canna Plants in Southeastern Asia and Southern China, Economic Botany, Vol. 58, No. 1, 2004, 112–114.[3] A. S. A. Snafi, Bioactive Components and Pharmacological Effects of Canna indica - an Overview, International Journal of Pharmacology and Toxicology, Vol. 5, No. 2, 2015, pp. 71–75.[4] X. J. Zhang, Z. W. Wang, Q. Mi, Phenolic Compounds from Canna edulis Ker Residue and Their Antioxidant Activity, LWT - Food Science Technology, Vol. 44, No. 10, 2011, pp. 2091–2096, https://doi.org/10.1016/j.lwt.2011.05.021. [5] F. Xie, S. Gong, W. Zhang, J. Wu, Z. Wang, Potential of Lignin from Canna edulis Ker Residue in The Inhibition of α-d-glucosidase: Kinetics and Interaction Mechanism Merging with Docking Simulation, International Journal of Biology and Macromolecules, Vol. 95, 2017, pp. 592–602, https://doi.org/10.1016/j.ijbiomac.2016.11.100.[6] J. Zhang, Z. W. Wang, Soluble Dietary Fiber from Canna edulis Ker By-product and Its Physicochemical Properties, Carbohydrates Polymers, Vol. 92, No. 1, 2013, pp. 289–296, http:/doi.org/10.1016/j.carbpol.2012.09.067.[7] T. M. H. Nguyen, H. L. Le, T. T. Ha, B. H. Bui, N. T. Le, V. H. Nguyen, T. V. A. Nguyen, Inhibitory Effect on Human Platelet Aggregation and Coagulation and Antioxidant Activity of Canna edulis Ker Gawl Rhizhomes and Its Secondary Metabolites, Journal of Ethnopharmacology, Vol. 263, 2020, pp. 113-136, https:/doi.org/10.1016/j.jep.2020.113136.[8] T. A. Y. Diaa, M. A. Ramada, A. A. Khalifa, Acetophenones, a Chalcone, a Chromone and Flavonoids from Pancratium Maritimum, Phytochemistry, Vol. 49, No. 8, pp. 1998, pp. 2579-2583, http:/doi.org/10.1016/S003109422(98)00429-4. [9] W. Koji, Y. Osanai, T. Imaizumi, S. Kanno, M. Takeshita, M. Ishikawa, Inhibitory Effect of The Alkyl Side Chain of Caffeic Acid Analogues on Lipopolysaccharide-induced Nitric Oxide Production in RAW264.7 Macrophages, Bioorganic Med. Chem., Vol. 16, No. 16, 2008, pp. 7795–7803, https:/doi.org/10.1016/j.bmc.2008.07.006.[10] C. Y. Wang, L. Han, K. Kang, C. L. Shao, Y. X. Wei, C. J. Zheng, H. S Guan, Secondary Metabolites From Green Algae Ulva Pertusa, Chemistry of Natural Compounds Vol. 46, No. 5, 2010, pp. 828-830.[11] C. T. Inh, N. T. H. Van, P. M. Quan, T. T. Q. Trang, T. A. Vien, N. T. Thuy, D. T. Thao, New Diterpenoid Isolated from Medicinal Plant Euphorbia tithymaloides (P.), Vietnam J. Chem., Vol. 54, 2016, pp. 274-279, https:/doi.org/10.15625/0866-7144.2016-00304 (in Vietnamese).[12] Q. Y. Li, H. Liang, B. Wang, Z. Z. Zhao, Chemical Constituents of Momordica charantia L, Yao Xue Xue Bao, Vol. 44, No. 9, 2009, pp. 1014-1018.[13] V. T. Diep, L. T. Loan, N. T. Thu, T. T. Ha, N. M. Khoi, N. H. Tuan, D. T. Ha, Triterpen, Flavonoid and Pyrimidine Compounds from The Aerial Parts of Dregea volubilis, Journal of Medicinal Materials, Vol. 24, No. 6, 2019, pp. 329-332.[14] H. M. Eid, D. Vallerand, A. Muhammad, T. Durst, P. S. Haddad, L. C. Martineau, Structural Constraints and the Importance of Lipophilicity for the Mitochondrial Uncoupling Activity of Naturally Occurring Caffeic Acid Esters with Potential for the Treatment of Insulin Resistance, Biochemical Pharmacology, Vol. 79, No. 3, 2010, pp. 444–454, https:/doi.org/10.1016/j.bcp.2009.08.026.[15] K. Takahashi, Y. Yoshioka, E. Kato, S. Katsuki, O. Iida, K. Hosokawa, J. Kawabata, Methyl Caffeate as a Glucosidase Inhibitor from Solanum Torvum fruits and the Activity of Related Compounds, Bioscience, Biotechnology and Biochemistry, Vol. 74, No. 4, 2010, pp. 741–745, https:/doi.org/10.1271/bbb.9087.[16] S. M. Fiuza, C. Gomes, L. J. Teixeira, M. T. G. D. Cruz, M. N. Cordeiro, N. Milhazes, F. Borges, M. P. Marques, Phenolic Acid Derivatives with Potential Anticancer Properties, a Structure-Activity Relationship Study Part 1: Methyl, Propyl and Octyl Esters of Caffeic and Gallic Acids, Bioorgan Med Chem, Vol. 12, No. 13, 2004, pp. 3581-3589, https:/doi.org/10.1016/j.bmc.2004.04.026.[17] S. P. Lee, G. Jun, E. Yoon, S. Park, C. Yang, Inhibitory Effect of Methyl Caffeate on Fos-Jun-DNA Complex Formation and Suppression of Cancer Cell Growth, Bulletin of Korean Chemical Society, Vol. 22, No. 10, 2001, pp. 1131-1135.
 
 
 
APA, Harvard, Vancouver, ISO, and other styles
8

Thanh Huyen, Le, Dao Sy Duc, Nguyen Xuan Hoan, Nguyen Huu Tho, and Nguyen Xuan Viet. "Synthesis of Fe3O4-Reduced Graphene Oxide Modified Tissue-Paper and Application in the Treatment of Methylene Blue." VNU Journal of Science: Natural Sciences and Technology 35, no. 3 (2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4883.

Full text
Abstract:
Graphene-based composites have received a great deal of attention in recent year because the presence of graphene can enhance the conductivity, strength of bulk materials and help create composites with superior qualities. Moreover, the incorporation of metal oxide nanoparticles such as Fe3O4 can improve the catalytic efficiency of composite material. In this work, we have synthesized a composite material with the combination of reduced graphene oxide (rGO), and Fe3O4 modified tissue-paper (mGO-PP) via a simple hydrothermal method, which improved the removal efficiency of the of methylene blue (MB) in water. MB blue is used as the model of contaminant to evaluate the catalytic efficiency of synthesized material by using a Fenton-like reaction. The obtained materials were characterized by SEM, XRD. The removal of materials with methylene blue is investigated by UV-VIS spectroscopy, and the result shows that mGO-PP composite is the potential composite for the color removed which has the removal efficiency reaching 65% in acetate buffer pH = 3 with the optimal time is 7 h.
 Keywords
 Graphene-based composite, methylene blue, Fenton-like reaction.
 References
 [1] Ma Joshi, Rue Bansal, Reng Purwar, Colour removal from textile effluents, Indian Journal of Fibre & Textile Research, 29 (2004) 239-259 http://nopr.niscair.res.in/handle/123456789/24631.[2] Kannan Nagar, Sundaram Mariappan, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes and pigments, 51 (2001) 25-40 https://doi.org/10.1016/S0143-7208(01)00056-0.[3] K Rastogi, J. N Sahu, B. C Meikap, M. N Biswas, Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone, Journal of hazardous materials, 158 (2008) 531-540.https://doi.org/10.1016/j.jhazmat.2008.01. 105.[4] Qin Qingdong, Ma Jun, Liu Ke, Adsorption of anionic dyes on ammonium-functionalized MCM-41, Journal of Hazardous Materials, 162 (2009) 133-139 https://doi.org/10.1016/j.jhazmat. 2008.05.016.[5] Mui Muruganandham, Rps Suri, Sh Jafari, Mao Sillanpää, Lee Gang-Juan, Jaj Wu, Muo Swaminathan, Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment, International Journal of Photoenergy, 2014 (2014). http://dx. doi.org/10.1155/2014/821674.[6] Herney Ramirez, Vicente Miguel , Madeira Luis Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Applied Catalysis B: Environmental, 98 (2010) 10-26 https://doi.org/ 10.1016/j.apcatb.2010.05.004.[7] Guo Rong, Jiao Tifeng, Li Ruifei, Chen Yan, Guo Wanchun, Zhang Lexin, Zhou Jingxin, Zhang Qingrui, Peng Qiuming, Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal, ACS Sustainable Chemistry & Engineering, 6 (2017) 1279-1288 https://doi.org/10.1021/acssuschemeng.7b03635.[8] Sun Chao, Yang Sheng-Tao, Gao Zhenjie, Yang Shengnan, Yilihamu Ailimire, Ma Qiang, Zhao Ru-Song, Xue Fumin, Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue, Materials Chemistry and Physics, 223 (2019) 751-757 https://doi.org/ 10.1016/j.matchemphys.2018.11.056.[9] Guo Hui, Ma Xinfeng, Wang Chubei, Zhou Jianwei, Huang Jianxin, Wang Zijin, Sulfhydryl-Functionalized Reduced Graphene Oxide and Adsorption of Methylene Blue, Environmental Engineering Science, 36 (2019) 81-89 https://doi. org/10.1089/ees.2018.0157.[10] Zhao Lianqin, Yang Sheng-Tao, Feng Shicheng, Ma Qiang, Peng Xiaoling, Wu Deyi, Preparation and application of carboxylated graphene oxide sponge in dye removal, International journal of environmental research and public health, 14 (2017) 1301 https://doi.org/10.3390/ijerph14111301.[11] Yu Dandan, Wang Hua, Yang Jie, Niu Zhiqiang, Lu Huiting, Yang Yun, Cheng Liwei, Guo Lin, Dye wastewater cleanup by graphene composite paper for tailorable supercapacitors, ACS applied materials & interfaces, 9 (2017) 21298-21306 https://doi.org/10.1021/acsami.7b05318.[12] Wang Hou, Yuan Xingzhong, Wu Yan, Huang Huajun, Peng Xin, Zeng Guangming, Zhong Hua, Liang Jie, Ren MiaoMiao, Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation, Advances in Colloid and Interface Science, 195 (2013) 19-40 https://doi. org/10.1016/j.cis.2013.03.009.[13] Marcano Daniela C, Kosynkin Dmitry V, Berlin Jacob M, Sinitskii Alexander, Sun Zhengzong, Slesarev Alexander, Alemany Lawrence B, Lu Wei, Tour James M, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814 https://doi.org/10.1021/nn1006368.[14] Zhang Jiali, Yang Haijun, Shen Guangxia, Cheng Ping, Zhang Jingyan, Guo Shouwu, Reduction of graphene oxide via L-ascorbic acid, Chemical Communications, 46 (2010) 1112-1114 http://doi. org/10.1039/B917705A [15] Gong Ming, Zhou Wu, Tsai Mon-Che, Zhou Jigang, Guan Mingyun, Lin Meng-Chang, Zhang Bo, Hu Yongfeng, Wang Di-Yan, Yang Jiang, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nature communications, 5 (2014) 4695 https:// doi.org/10.1038/ncomms5695.[16] Wu Zhong-Shuai, Yang Shubin, Sun Yi, Parvez Khaled, Feng Xinliang, Müllen Klaus, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134 (2012) 9082-9085 https://doi.org/10.1021/ja3030565.[17] Nguyen Son Truong, Nguyen Hoa Tien, Rinaldi Ali, Nguyen Nam Van, Fan Zeng, Duong Hai Minh, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414 (2012) 352-358 https://doi.org/ 10.1016/j.colsurfa.2012.08.048.[18] Deng Yang, Englehardt James D, Treatment of landfill leachate by the Fenton process, Water research, 40 (2006) 3683-3694 https://doi.org/ 10.1016/j.watres.2006.08.009.
 
APA, Harvard, Vancouver, ISO, and other styles
9

"Force field of tetrafluoroborate anion for molecular dynamics simulation: a new approach." Kharkov University Bulletin Chemical Series, no. 33 (2019). http://dx.doi.org/10.26565/2220-637x-2019-33-03.

Full text
Abstract:
González A., Goikolea E., Barrena J. A., Mysyk R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58 1189-1206. Zhong C., Deng Y., Hu W., Qiao J., Zhang L., Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44 (21), 7484-7539. Dahl K., Sando G., Fox D., Sutto T., Owrutsky J. Vibrational spectroscopy and dynamics of small anions in ionic liquid solutions. J. Chem. Phys. 2005, 123 084504. Zhang B., Yuan Z., li X., Ren X., Nian H., Shen Y., Yun Q. Ion-molecule interaction in solutions of lithium tetrafluoroborate in propylene carbonate: An ftir vibrational spectroscopic study. In. J. Electrochem. Sc. 2013, 8 12735-12740. Jow T. R., Xu K., Borodin O., Ue M. Electrolytes for lithium and lithium-ion batteries. Springer: New York, NY, 2014; Vol. 58, p 476. Paschoal V. H., Faria L. F. O., Ribeiro M. C. C. Vibrational spectroscopy of ionic liquids. Chem. Rev. 2017, 117 (10), 7053-7112. Ueno S., Tanimura Y., Ten-no S. Molecular dynamics simulation for infrared spectroscopy with intramolecular forces from electronic properties of on-the-fly quantum chemical calculations. Int. J. Quantum Chem. 2013, 113 (3), 330-335. Xu R. J., Blasiak B., Cho M., Layfield J. P., Londergan C. H. A direct, quantitative connection between molecular dynamics simulations and vibrational probe line shapes. J. Phys. Chem. Lett. 2018, 9 (10), 2560-2567. Choi E., Yethiraj A. Conformational properties of a polymer in an ionic liquid: Computer simulations and integral equation theory of a coarse-grained model. J. Phys. Chem. B 2015, 119 (29), 9091-9097. Li B., Ma K., Wang Y.-L., Turesson M., Woodward C. E., Forsman J. Fused coarse-grained model of aromatic ionic liquids and their behaviour at electrodes. Phys. Chem. Chem. Phys. 2016, 18 (11), 8165-8173. Mehta N. A., Levin D. A. Molecular dynamics electrospray simulations of coarse-grained ethylammonium nitrate (ean) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4). Aerospace 2018, 5 (1). Son C. Y., McDaniel J. G., Schmidt J. R., Cui Q., Yethiraj A. First-principles united atom force field for the ionic liquid Bmim+BF4–: An alternative to charge scaling. J. Phys. Chem. B 2016, 120 (14), 3560-3568. Tetiana C., Oleg K., Yaroslav K. Microstructure and dynamics of single charged ions in propylene carbonate. Kharkov Univ. Bull. Chem. Ser. 2013, 0 (22), 25-38. Vovchynskyi I. S., Kolesnik Y. V., Filatov Y. I., Kalugin O. N. Molecular modelling on solutions of 1-1′-spirobipirrolidinium tetrafluoroborate in acetonitrile. J. Mol. Liq. 2017, 235 60-67. Sambasivarao S. V., Acevedo O. Development of opls-aa force field parameters for 68 unique ionic liquids. J. Chem. Theory Comput. 2009, 5 (4), 1038-1050. Doherty B., Zhong X., Gathiaka S., Li B., Acevedo O. Revisiting OPLS force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 2017, 13 (12), 6131 6145. Feng G., Huang J., Sumpter B. G., Meunier V., Qiao R. Structure and dynamics of electrical double layers in organic electrolytes. Phys. Chem. Chem. Phys. 2010, 12 (20), 5468-5479. Kanzaki R., Mitsugi T., Fukuda S., Fujii K., Takeuchi M., Soejima Y., Takamuku T., Yamaguchi T., Umebayashi Y., Ishiguro S.-i. Ion–ion interaction in room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate studied by large angle x-ray scattering experiment and molecular dynamics simulations. J. Mol. Liq. 2009, 147 (1), 77-82. Shim Y., Kim H. J. Nanoporous carbon supercapacitors in an ionic liquid: A computer simulation study. ACS Nano 2010, 4 (4), 2345-2355. Shim Y., Jung Y., Kim H. J. Graphene-based supercapacitors: A computer simulation study. J. Phys. Chem. B 2011, 115 (47), 23574-23583. Yang P.-Y., Ju S.-P., Hsieh H.-S., Lin J.-S. The diffusion behavior and capacitance of tetraethylammonium/tetrafluoroborate ions in acetonitrile with different molar concentrations: A molecular dynamics study. RSC Adv. 2017, 7 (87), 55044-55050. Zhang Q.-Y., Xie P., Wang X., Yu X.-W., Shi Z.-Q., Zhao S.-H. Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study. Chin. Phys. B 2016, 25 (6), 066102. Liu Z., Huang S., Wang W. A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B 2004, 108 (34), 12978-12989. Wu X., Liu Z., Huang S., Wang W. Molecular dynamics simulation of room-temperature ionic liquid mixture of [Bmim][BF4] and acetonitrile by a refined force field. Phys. Chem. Chem. Phys. 2005, 7 (14), 2771-2779. de Andrade J., Böes E. S., Stassen H. Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium cationsforce-field proposal and validation. J. Phys. Chem. B 2002, 106 (51), 13344-13351. Canongia Lopes J. N., Pádua A. A. H. Molecular force field for ionic liquids iii: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J. Phys. Chem. B 2006, 110 (39), 19586-19592. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams, Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J. Gaussian 16 rev. C.01, Wallingford, CT, 2016. Breneman C. M., Wiberg K. B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 1990, 11 (3), 361-373. Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117 (19), 5179-5197. Mayo S. L., Olafson B. D., Goddard W. A. Dreiding: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94 (26), 8897-8909. Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., Montgomery Jr J. A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14 (11), 1347-1363. Xue H., Twamley B., Shreeve J. n. M. The first 1-alkyl-3-perfluoroalkyl-4,5- dimethyl-1,2,4-triazolium salts. J. Org. Chem. 2004, 69 (4), 1397-1400. Jorgensen W. L., Maxwell D. S., Tirado-Rives J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118 (45), 11225-11236. Pádua A. A. H., Costa Gomes M. F., Canongia Lopes J. N. A. Molecular solutes in ionic liquids: A structural perspective. Acc. Chem. Res. 2007, 40 (11), 1087-1096. Pensado A. S., Gomes M. F. C., Lopes J. N. C., Malfreyt P., Pádua A. A. H. Effect of alkyl chain length and hydroxyl group functionalization on the surface properties of imidazolium ionic liquids. Phys. Chem. Chem. Phys. 2011, 13 (30), 13518-13526. Shimizu K., Pensado A., Malfreyt P., Pádua A. A. H., Canongia Lopes J. N. 2d or not 2d: Structural and charge ordering at the solid-liquid interface of the 1 (2 hydroxyethyl)-3-methylimidazolium tetrafluoroborate ionic liquid. Faraday Discuss. 2012, 154 (0), 155-169. Canongia Lopes J. N., Deschamps J., Pádua A. A. H. Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 2004, 108 (6), 2038-2047. Canongia Lopes J. N., Pádua A. A. H. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 2004, 108 (43), 16893 16898. Shimizu K., Almantariotis D., Gomes M. F. C., Pádua A. A. H., Canongia Lopes J. N. Molecular force field for ionic liquids v: Hydroxyethylimidazolium, dimethoxy-2- methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 2010, 114 (10), 3592-3600. Smith W., Yong C. W., Rodger P. M. DL_POLY: Application to molecular simulation. Mol. Simulat. 2002, 28 (5), 385-471. Lindahl E., Hess B., van der Spoel D. Gromacs 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model. 2001, 7 (8), 306-317. Pronk S., Páll S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M. R., Smith J. C., Kasson P. M., van der Spoel D., Hess B., Lindahl E. Gromacs 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29 (7), 845-854. Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26 (16), 1701-1718. Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126 (1), 014101. Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81 (8), 3684-3690. Koverga V. A., Korsun O. M., Kalugin O. N., Marekha B. A., Idrissi A. A new potential model for acetonitrile: Insight into the local structure organization. J. Mol. Liq. 2017, 233 251-261. Agieienko V. N., Kolesnik Y. V., Kalugin O. N. Structure, solvation, and dynamics of Mg2+, Ca2+, Sr2+, and Ba2+ complexes with 3-hydroxyflavone and perchlorate anion in acetonitrile medium: A molecular dynamics simulation study. J. Chem. Phys. 2014, 140 (19), 194501. Kovacs H., Kowalewski J., Maliniak A., Stilbs P. Multinuclear relaxation and nmr self-diffusion study of the molecular dynamics in acetonitrile-chloroform liquid mixtures. J. Phys. Chem. 1989, 93 (2), 962-969. Kunz W., Calmettes P., Bellissent-Funel M. C. Dynamics of liquid acetonitrile at high frequencies. J. Chem. Phys. 1993, 99 (3), 2079-2082. Hurle R. L., Woolf L. A. Self-diffusion in liquid acetonitrile under pressure. J. Chem. Soc. Faraday Trans. 1982, 78 (7), 2233-2238. Hawlicka E., Grabowski R. Solvation of ions in acetonitrile-methanol solutions of sodium iodide. Ber. Bunsenges. Phys. Chern. 1990, 94 (4), 486-489. Holz M., Mao X. a., Seiferling D., Sacco A. Experimental study of dynamic isotope effects in molecular liquids: Detection of translationrotation coupling. J. Chem. Phys. 1996, 104 (2), 669-679. Liang M., Zhang X.-X., Kaintz A., Ernsting N. P., Maroncelli M. Solvation dynamics in a prototypical ionic liquid + dipolar aprotic liquid mixture: 1-butyl-3-methylimidazolium tetrafluoroborate + acetonitrile. J. Phys. Chem. B 2014, 118 (5), 1340-1352. Marcus Y. The properties of solvents. 1998. Marekha B. A., Kalugin O. N., Bria M., Buchner R., Idrissi A. Translational diffusion in mixtures of imidazolium ils with polar aprotic molecular solvents. J. Phys. Chem. B 2014, 118 (20), 5509-5517. Bešter-Rogač M., Stoppa A., Buchner R. Ion association of imidazolium ionic liquids in acetonitrile. J. Phys. Chem. B 2014, 118 (5), 1426-1435.
APA, Harvard, Vancouver, ISO, and other styles
10

Thanh Binh, Nguyen Thi, Nguyen Thi Hai Yen, Dang Kim Thu, Nguyen Thanh Hai, and Bui Thanh Tung. "The Potential of Medicinal Plants and Bioactive Compounds in the Fight Against COVID-19." VNU Journal of Science: Medical and Pharmaceutical Sciences 37, no. 3 (2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4372.

Full text
Abstract:
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus , is causing a serious worldwide COVID-19 pandemic. The emergence of strains with rapid spread and unpredictable changes is the cause of the increase in morbidity and mortality rates. A number of drugs as well as vaccines are currently being used to relieve symptoms, prevent and treat the disease caused by this virus. However, the number of approved drugs is still very limited due to their effectiveness and side effects. In such a situation, medicinal plants and bioactive compounds are considered a highly valuable source in the development of new antiviral drugs against SARS-CoV-2. This review summarizes medicinal plants and bioactive compounds that have been shown to act on molecular targets involved in the infection and replication of SARS-CoV-2.
 Keywords: Medicinal plants, bioactive compounds, antivirus, SARS-CoV-2, COVID-19
 References
 [1] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019, Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[2] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int, 2021 (accessed on: August 27, 2021).[3] H. Wang, P. Yang, K. Liu, F. Guo, Y. Zhang et al., SARS Coronavirus Entry into Host Cells Through a Novel Clathrin- and Caveolae-Independent Endocytic Pathway, Cell Research, Vol. 18, No. 2, 2008, pp. 290-301, https://doi.org/10.1038/cr.2008.15.[4] A. Zumla, J. F. W. Chan, E. I. Azhar, D. S. C. Hui, K. Y. Yuen., Coronaviruses-Drug Discovery and Therapeutic Options, Nature Reviews Drug Discovery, Vol. 15, 2016, pp. 327-347, https://doi.org/10.1038/nrd.2015.37.[5] A. Prasansuklab, A. Theerasri, P. Rangsinth, C. Sillapachaiyaporn, S. Chuchawankul, T. Tencomnao, Anti-COVID-19 Drug Candidates: A Review on Potential Biological Activities of Natural Products in the Management of New Coronavirus Infection, Journal of Traditional and Complementary Medicine, Vol. 11, 2021, pp. 144-157, https://doi.org/10.1016/j.jtcme.2020.12.001.[6] R. E. Ferner, J. K. Aronson, Chloroquine and Hydroxychloroquine in Covid-19, BMJ, Vol. 369, 2020, https://doi.org/10.1136/bmj.m1432[7] J. Remali, W. M. Aizat, A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection, Frontiers in Pharmacology, Vol. 11, 2021, https://doi.org/10.3389/fphar.2020.589044.[8] Y. Chen, Q. Liu, D. Guo, Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis, Medical Virology, Vol. 92, 2020, pp. 418‐423. https://doi.org/10.1002/jmv.25681.[9] B. Benarba, A. Pandiella, Medicinal Plants as Sources of Active Molecules Against COVID-19, Frontiers in Pharmacology, Vol. 11, 2020, https://doi.org/10.3389/fphar.2020.01189.[10] N. T. Chien, P. V. Trung, N. N. Hanh, Isolation Tribulosin, a Spirostanol Saponin from Tribulus terrestris L, Can Tho University Journal of Science, Vol. 10, 2008, pp. 67-71 (in Vietnamese).[11] V. Q. Thang Study on Extracting Active Ingredient Protodioscin from Tribulus terrestris L.: Doctoral dissertation, VNU University of Science, 2018 (in Vietnamese).[12] Y. H. Song, D. W. Kim, M. J. C. Long, H. J. Yuk, Y. Wang, N. Zhuang et al., Papain-Like Protease (Plpro) Inhibitory Effects of Cinnamic Amides from Tribulus terrestris Fruits, Biological and Pharmaceutical Bulletin, Vol. 37, No. 6, 2014, pp. 1021-1028, https://doi.org/10.1248/bpb.b14-00026.[13] D. Dermawan, B. A. Prabowo, C. A. Rakhmadina, In Silico Study of Medicinal Plants with Cyclodextrin Inclusion Complex as The Potential Inhibitors Against SARS-Cov-2 Main Protease (Mpro) and Spike (S) Receptor, Informatics in Medicine Unlocked, Vol. 25, 2021, pp. 1-18, https://doi.org/10.1016/j.imu.2021.100645.[14] R. Dang, S. Gezici, Immunomodulatory Effects of Medicinal Plants and Natural Phytochemicals in Combating Covid-19, The 6th International Mediterranean Symposium on Medicinal and Aromatic Plants (MESMAP-6), Izmir, Selcuk (Ephesus), Turkey, 2020, pp. 12-13.[15] G. Jiangning, W. Xinchu, W. Hou, L. Qinghua, B. Kaishun, Antioxidants from a Chinese Medicinal Herb–Psoralea corylifolia L., Food Chemistry, Vol. 9, No. 2, 2005, pp. 287-292, https://doi.org/10.1016/j.foodchem.2004.04.029.[16] B. Ruan, L. Y. Kong, Y. Takaya, M. Niwa, Studies on The Chemical Constituents of Psoralea corylifolia L., Journal of Asian Natural Products Research, Vol. 9, No. 1, 2007, pp. 41-44, https://doi.org/10.1080/10286020500289618.[17] D. T. Loi, Vietnamese Medicinal Plants and Herbs, Medical Publishing House, Hanoi, 2013 (in Vietnamese).[18] S. Mazraedoost, G. Behbudi, S. M. Mousavi, S. A. Hashemi, Covid-19 Treatment by Plant Compounds, Advances in Applied NanoBio-Technologies, Vol. 2, No. 1, 2021, pp. 23-33, https://doi.org/10.47277/AANBT/2(1)33.[19] B. A. Origbemisoye, S. O. Bamidele, Immunomodulatory Foods and Functional Plants for COVID-19 Prevention: A Review, Asian Journal of Medical Principles and Clinical Practice, 2020, pp. 15-26, https://journalajmpcp.com/index.php/AJMPCP/article/view/30124[20] A. Mandal, A. K. Jha, B. Hazra, Plant Products as Inhibitors of Coronavirus 3CL Protease, Frontiers in Pharmacology, Vol. 12, 2021, pp. 1-16, https://doi.org/10.3389/fphar.2021.583387[21] N. H. Tung, V. D. Loi, B. T. Tung, L.Q. Hung, H. B. Tien et al., Triterpenen Ursan Frame Isolated from the Roots of Salvia Miltiorrhiza Bunge Growing in Vietnam, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 32, No. 2, 2016, pp. 58-62, https://js.vnu.edu.vn/MPS/article/view/3583 (in Vietnamese).[22] J. Y. Park, J. H. Kim, Y. M. Kim, H. J. Jeong, D. W. Kim, K. H. Park et al., Tanshinones as Selective and Slow-Binding Inhibitors for SARS-CoV Cysteine Proteases. Bioorganic and Medicinal Chemistry, Vol. 20, No. 19, 2012, pp. 5928-5935, https://doi.org/10.1016/j.bmc.2012.07.038.[23] F. Hamdani, N. Houari, Phytotherapy of Covid-19. A Study Based on a Survey in North Algeria, Phytotherapy, Vol. 18, No. 5, 2020, pp. 248-254, https://doi.org/10.3166/phyto-2020-0241.[24] P. T. L. Huong, N. T. Dinh, Chemical Composition And Antibacterial Activity of The Essential Oil From The Leaves of Regrowth Eucalyptus Collected from Viet Tri City, Phu Tho Province, Vietnam Journal of Science, Technology and Engineering, Vol. 18, No. 1, 2020, pp. 54-61 (in Vietnamese).[25] M. Asif, M. Saleem, M. Saadullah, H. S. Yaseen, R. Al Zarzour, COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-Inflammatory, and Immunomodulatory Properties, Inflammopharmacology, Vol. 28, 2020, pp. 1153-1161, https://doi.org/10.1007/s10787-020-00744-0.[26] I. Jahan, O. Ahmet, Potentials of Plant-Based Substance to Inhabit and Probable Cure for The COVID-19, Turkish Journal of Biology, Vol. 44, No. SI-1, 2020, pp. 228-241, https://doi.org/10.3906/biy-2005-114.[27] A. D. Sharma, I. Kaur, Eucalyptus Essential Oil Bioactive Molecules from Against SARS-Cov-2 Spike Protein: Insights from Computational Studies, Res Sq., 2021, pp. 1-6, https://doi.org/10.21203/ rs.3.rs-140069/v1. [28] K. Rajagopal, P. Varakumar, A. Baliwada, G. Byran, Activity of Phytochemical Constituents of Curcuma Longa (Turmeric) and Andrographis Paniculata Against Coronavirus (COVID-19): An in Silico Approach, Future Journal of Pharmaceutical Sciences, Vol. 6, No. 1, 2020, pp. 1-10, https://doi.org/10.1186/s43094-020-00126-x[29] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan et al., Structure of The SARS-CoV-2 Spike Receptor-Binding Domain Bound to The ACE2 Receptor, Nature, Vol. 581, No. 7807, 2020, pp. 215-220, https://doi.org/10.1038/s41586-020-2180-5.[30] M. Letko, A. Marzi, V. Munster, Functional Assessment of Cell Entry and Receptor Usage for SARS-Cov-2 and Other Lineage B Betacoronaviruses, Nature Microbiology, Vol. 5, No. 4, 2020, pp. 562-569, https://doi.org/10.1038/s41564-020-0688-y.[31] C. Yi, X. Sun, J. Ye, L. Ding, M. Liu, Z. Yang et al., Key Residues of The Receptor Binding Motif in The Spike Protein of SARS-Cov-2 That Interact with ACE2 and Neutralizing Antibodies, Cellular and Molecular Immunology, Vol. 17, No. 6, 2020, pp. 621-630, https://doi.org/10.1038/s41423-020-0458-z.[32] N. T. Thom, Study on The Composition and Biological Activities of Flavonoids from The Roots of Scutellaria baicalensis: Doctoral Dissertation, Hanoi University of Science and Technology, 2018 (in Vietnamese).[33] Y. J. Tang, F. W. Zhou, Z. Q. Luo, X. Z. Li, H. M. Yan, M. J. Wang et al., Multiple Therapeutic Effects of Adjunctive Baicalin Therapy in Experimental Bacterial Meningitis, Inflammation, Vol. 33, No. 3, 2010, pp. 180-188, https://doi.org/10.1007/s10753-009-9172-9.[34] H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li et al., Scutellaria Baicalensis Extract and Baicalein Inhibit Replication of SARS-Cov-2 and Its 3C-Like Protease in Vitro, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 36, No. 1, 2021, pp. 497-503, https://doi.org/10.1080/14756366.2021.1873977.[35] Z. Iqbal, H. Nasir, S. Hiradate, Y. Fujii, Plant Growth Inhibitory Activity of Lycoris Radiata Herb. and The Possible Involvement of Lycorine as an Allelochemical, Weed Biology and Management, Vol. 6, No. 4, 2006, pp. 221-227, https://doi.org/10.1111/j.1445-6664.2006.00217.x.[36] S. Y. Li, C. Chen, H. Q. Zhang, H. Y. Guo, H. Wang, L. Wang et al., Identification of Natural Compounds with Antiviral Activities Against SARS-Associated Coronavirus, Antiviral Research, Vol. 67, No. 1, 2005, pp. 18-23, https://doi.org/10.1016/j.antiviral.2005.02.007.[37] S. Kretzing, G. Abraham, B. Seiwert, F. R. Ungemach, U. Krügel, R. Regenthal, Dose-dependent Emetic Effects of The Amaryllidaceous Alkaloid Lycorine in Beagle Dogs, Toxicon, Vol. 57, No. 1, 2011, pp. 117-124, https://doi.org/10.1016/j.toxicon.2010.10.012.[38] Y. N. Zhang, Q. Y. Zhang, X. D. Li, J. Xiong, S. Q. Xiao, Z. Wang, et al., Gemcitabine, Lycorine and Oxysophoridine Inhibit Novel Coronavirus (SARS-Cov-2) in Cell Culture, Emerging Microbes & Infections, Vol. 9, No. 1, 2020, pp. 1170-1173, https://doi.org/10.1080/22221751.2020.1772676.[39] Y. H. Jin, J. S. Min, S. Jeon, J. Lee, S. Kim, T. Park et al., Lycorine, a Non-Nucleoside RNA Dependent RNA Polymerase Inhibitor, as Potential Treatment for Emerging Coronavirus Infections, Phytomedicine, Vol. 86, 2021, pp. 1-8, https://doi.org/10.1016/j.phymed.2020.153440.[40] H. V. Hoa, P. V. Trung, N. N. Hanh, Isolation Andrographolid and Neoandrographolid from Andrographis Paniculata Nees, Can Tho University Journal of Science, Vol. 10, 2008, pp. 25-30 (in Vietnamese)[41] S. K. Enmozhi, K. Raja, I. Sebastine, J. Joseph, Andrographolide as a Potential Inhibitor Of SARS-Cov-2 Main Protease: An in Silico Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 9, 2021, pp. 3092-3098, https://doi.org/10.1080/07391102.2020.1760136.[42] S. A. Lakshmi, R. M. B. Shafreen, A. Priya, K. P. Shunmugiah, Ethnomedicines of Indian Origin for Combating COVID-19 Infection by Hampering The Viral Replication: Using Structure-Based Drug Discovery Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 13, 2020, pp. 4594-4609, https://doi.org/10.1080/07391102.2020.1778537.[43] N. P. L. Laksmiani, L. P. F. Larasanty, A. A. G. J. Santika, P. A. A. Prayoga, A. A. I. K. Dewi, N. P. A. K. Dewi, Active Compounds Activity from The Medicinal Plants Against SARS-Cov-2 Using in Silico Assay, Biomedical and Pharmacology Journal, Vol. 13, No. 2, 2020, pp. 873-881, https://dx.doi.org/10.13005/bpj/1953.[44] N. A. Murugan, C. J. Pandian, J. Jeyakanthan, Computational Investigation on Andrographis Paniculata Phytochemicals to Evaluate Their Potency Against SARS-Cov-2 in Comparison to Known Antiviral Compounds in Drug Trials, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 12, 2020, pp. 4415-4426, https://doi.org/10.1080/07391102.2020.1777901.[45] S. Hiremath, H. V. Kumar, M. Nandan, M. Mantesh, K. Shankarappa,V. Venkataravanappa et al., In Silico Docking Analysis Revealed The Potential of Phytochemicals Present in Phyllanthus Amarus and Andrographis Paniculata, Used in Ayurveda Medicine in Inhibiting SARS-Cov-2, 3 Biotech, Vol. 11, No. 2, 2021, pp. 1-18, https://doi.org/10.1007/s13205-020-02578-7.[46] K. S. Ngiamsuntorn, A. Suksatu, Y. Pewkliang, P. Thongsri, P. Kanjanasirirat, S. Manopwisedjaroen, et al., Anti-SARS-Cov-2 Activity of Andrographis Paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives, Journal of Natural Products, Vol. 84, No. 4, 2021, pp. 1261-1270, https://doi.org/10.1021/acs.jnatprod.0c01324.[47] D. X. Em, N. T. T. Dai, N. T. T. Tram, D. X. Chu, Four Compounds Isolated from Azadirachta Indica Jus leaves. F., Meliaceae, Pharmaceutical Journal, Vol. 59, No. 7, 2019, pp. 33-36 (in Vietnamese).[48] V. V Do, N. T. Thang, N. T. Minh, N. N. Hanh, Isolation, Purification and Investigation on Antimicrobial Activity of Salanin from Neem Seed Kernel (Azadirachta Indica A. Juss) of The Neem Tree Planted in Ninh Thuan Province, Vietnam, Journal of Science and Technology, Vol. 44, No. 2, 2006, pp. 24-31 (in Vietnamese).[49] P. I. Manzano Santana, J. P. P. Tivillin, I. A. Choez Guaranda, A. D. B. Lucas, A. Katherine, Potential Bioactive Compounds of Medicinal Plants Against New Coronavirus (SARS-Cov-2): A Review, Bionatura, Vol. 6, No. 1, 2021, pp. 1653-1658, https://doi.org/10.21931/RB/2021.06.01.30[50] S. Borkotoky, M. Banerjee, A Computational Prediction of SARS-Cov-2 Structural Protein Inhibitors from Azadirachta Indica (Neem), Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 11, 2021, pp. 4111-4121, https://doi.org/10.1080/07391102.2020.1774419.[51] R. Jager, R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, J. M. Wilson, Comparative Absorption of Curcumin Formulations, Nutrition Journal, Vol. 13, No. 11, 2014, https://doi.org/10.1186/1475-2891-13-11.[52] D. Praditya, L. Kirchhoff, J. Bruning, H. Rachmawati, J. Steinmann, E. Steinmann, Anti-infective Properties of the Golden Spice Curcumin, Front Microbiol, Vol. 10, No. 912, 2019, https://doi.org/10.3389/fmicb.2019.00912.[53] C. C. Wen, Y. H. Kuo, J. T. Jan, P. H. Liang, S. Y. Wang, H. G. Liu et al., Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities Against Severe Acute Respiratory Syndrome Coronavirus, Journal of Medicinal Chemistry, Vol. 50, No. 17, 2007, pp. 4087-4095, https://doi.org/10.1021/jm070295s.[54] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, No. 10224, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[55] M. Kandeel, M. Al Nazawi, Virtual Screening and Repurposing of FDA Approved Drugs Against COVID-19 Main Protease, Life Sciences, Vol. 251, No. 117627, 2020, pp. 1-5, https://doi.org/10.1016/j.lfs.2020.117627.[56] V. K. Maurya, S. Kumar, A. K. Prasad, M. L. B. Bhatt, S. K. Saxena, Structure-Based Drug Designing for Potential Antiviral Activity of Selected Natural Products from Ayurveda Against SARS-CoV-2 Spike Glycoprotein and Its Cellular Receptor, Virusdisease, Vol. 31, No. 2, 2020, pp. 179-193, https://doi.org/10.1007/s13337-020-00598-8.[57] M. Hoffmann, H. Kleine Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, Vol. 181, No. 2, 2020, pp. 271-280, https://doi.org/10.1016/j.cell.2020.02.052.[58] S. Katta, A. Srivastava, R. L. Thangapazham, I. L. Rosner, J. Cullen, H. Li et al., Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells, International Journal of Molecular Sciences, Vol. 20, No. 19, 2019, pp. 4891-4907, https://doi.org/10.3390/ijms20194891.[59] D. Ting, N. Dong, L. Fang, J. Lu, J. Bi, S. Xiao et al., Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin, ACS Applied Nano Materials, Vol. 1, No. 10, 2018, pp. 5451-5459, https://doi.org/10.1021/acsanm.8b00779.[60] T. Huynh, H. Wang, B. Luan, In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease, the Journal of Physical Chemistry Letters, Vol. 11, No. 11, 2020, pp. 4413-4420, https://doi.org/10.1021/acs.jpclett.0c00994.[61] D. D'Ardes, A. Boccatonda, I. Rossi, M. T. Guagnano, COVID-19 and RAS: Unravelling an Unclear Relationship, International Journal of Molecular Sciences, Vol. 21, No. 8, 2020, pp. 3003-3011, https://doi.org/10.3390/ijms21083003. [62] X. F. Pang, L. H. Zhang, F. Bai, N. P. Wang, R. E. Garner, R. J. McKallip et al., Attenuation of Myocardial Fibrosis with Curcumin is Mediated by Modulating Expression of Angiotensin II AT1/AT2 Receptors and ACE2 in Rats, Drug Design Development Therapy, Vol. 9, 2015, pp. 6043-6054, https://doi.org/10.2147/DDDT.S95333.[63] Y. Yao, W. Wang, M. Li, H. Ren, C. Chen, J. Wang et al., Curcumin Exerts its Anti-Hypertensive Effect by Down-Regulating the AT1 Receptor in Vascular Smooth Muscle Cells, Scientific Reports, Vol. 6, No. 25579, 2016, pp. 1-6, https://doi.org/10.1038/srep25579.[64] V. J. Costela Ruiz, R. Illescas Montes, J. M. Puerta Puerta, C. Ruiz, L. Melguizo Rodríguez, SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease, Cytokine Growth Factor Reviews, Vol. 54, 2020, pp. 62-75, https://doi.org/10.1016/j.cytogfr.2020.06.001.[65] H. Valizadeh, S. Abdolmohammadi Vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi et al., Nano-Curcumin Therapy, a Promising Method in Modulating Inflammatory Cytokines in COVID-19 Patients, International Immunopharmacology, Vol. 89 (PtB), No. 107088, 2020, pp. 1-12, https://doi.org/10.1016/j.intimp.2020.107088.[66] Y. H. Lo, R. D. Lin, Y. P. Lin, Y. L. Liu, M. H. Lee, Active Constituents from Sophora Japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes, Journal of Ethnopharmacology, Vol. 124, No. 3, 2009, pp. 625-629, https://doi.org/10.1016/j.jep.2009.04.053.[67] A. Robaszkiewicz, A. Balcerczyk, G. Bartosz, Antioxidative and Prooxidative Effects of Quercetin on A549 Cells, Cell Biology International, Vol. 31, No. 10, 2007, pp. 1245-1250, https://doi.org/10.1016/j.cellbi.2007.04.009[68] N. Uchide, H. Toyoda, Antioxidant Therapy as a Potential Approach to Severe Influenza-associated Complications, Molecules (Basel, Switzerland), Vol. 16, No. 3, 2011, pp. 2032-2052, https://doi.org/10.3390/molecules16032032.[69] M. P. Nair, C. Kandaswami, S. Mahajan, K. C. Chadha, R. Chawda, H. Nair et al., The Flavonoid, Quercetin, Differentially Regulates Th-1 (IFNgamma) and Th-2 (IL4) Cytokine Gene Expression by Normal Peripheral Blood Mononuclear Cells, Biochimica et Biophysica Acta - Molecular Cell Research, Vol. 1593, No. 1, 2002, pp. 29-36, https://doi.org/10.1016/s0167-4889(02)00328-2.[70] X. Chen, Z. Wang, Z. Yang, J. Wang, Y. Xu, R. X. Tan et al., Houttuynia Cordata Blocks HSV Infection Through Inhibition of NF-κB Activation, Antiviral Research, Vol. 92, No. 2, 2011, pp. 341-345, https://doi.org/10.1016/j.antiviral.2011.09.005.[71] T. N. Kaul, E. J. Middleton, P. L. Ogra, Antiviral Effect of Flavonoids on Human Viruses, Journal of Medical Virology, Vol. 15. No. 1, 1985, pp. 71-79, https://doi.org/10.1002/jmv.1890150110.[72] K. Zandi, B. T. Teoh, S. S. Sam, P. F. Wong, M. R. Mustafa, S. AbuBakar, Antiviral Activity of Four Types of Bioflavonoid Against Dengue Virus Type-2, Virology Journal, Vol. 8, No. 1, 2011, pp. 560-571, https://doi.org/10.1186/1743-422X-8-560.[73] J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim, K. H. Park et al., Evaluation of Polyphenols from Broussonetia Papyrifera as Coronavirus Protease Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 32, No. 1, 2017, pp. 504-515, https://doi.org/10.1080/14756366.2016.1265519.[74] S. C. Cheng, W. C. Huang, J. H. S. Pang, Y. H. Wu, C. Y. Cheng, Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways, International Journal of Molecular Sciences, Vol. 20, No. 12, 2019, pp. 2957-2981, https://doi.org/10.3390/ijms20122957. [75] O. J. Lara Guzman, J. H. Tabares Guevara, Y. M. Leon Varela, R. M. Álvarez, M. Roldan, J. A. Sierra et al., Proatherogenic Macrophage Activities Are Targeted by The Flavonoid Quercetin, The Journal of Pharmacology and Experimental Therapeutics, Vol. 343, No. 2, 2012, pp. 296-303, https://doi.org/10.1124/jpet.112.196147.[76] A. Saeedi Boroujeni, M. R. Mahmoudian Sani, Anti-inflammatory Potential of Quercetin in COVID-19 Treatment, Journal of Inflammation, Vol. 18, No. 1, 2021, pp. 3-12, https://doi.org/10.1186/s12950-021-00268-6.[77] M. Smith, J. C. Smith, Repurposing Therapeutics for COVID-19: Supercomputer-based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-human ACE2 Interface, ChemRxiv, 2020, pp. 1-28, https://doi.org/10.26434/chemrxiv.11871402.v4.[78] S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, S. Soetjipto, Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study, Preprints, 2020, pp. 1-14, https://doi.org/10.20944/preprints202003.0226.v1.[79] J. M. Calderón Montaño, E. B. Morón, C. P. Guerrero, M. L. Lázaro, A Review on the Dietary Flavonoid Kaempferol, Mini Reviews in Medicinal Chemistry, Vol. 11, No. 4, 2011, pp. 298-344, https://doi.org/10.2174/138955711795305335.[80] A. Y. Chen, Y. C. Chen, A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention, Food Chem, Vol. 138, No. 4, 2013, pp. 2099-2107, https://doi.org/10.1016/j.foodchem.2012.11.139.[81] S. Schwarz, D. Sauter, W. Lu, K. Wang, B. Sun, T. Efferth et al., Coronaviral Ion Channels as Target for Chinese Herbal Medicine, Forum on Immunopathological Diseases and Therapeutics, Vol. 3, No. 1, 2012, pp. 1-13, https://doi.org/10.1615/ForumImmunDisTher.2012004378.[82] R. Zhang, X. Ai, Y. Duan, M. Xue, W. He, C. Wang et al., Kaempferol Ameliorates H9N2 Swine Influenza Virus-induced Acute Lung Injury by Inactivation of TLR4/MyD88-mediated NF-κB and MAPK Signaling Pathways, Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, Vol. 89, 2017, pp. 660-672, https://doi.org/10.1016/j.biopha.2017.02.081.[83] K. W. Chan, V. T. Wong, S. C. W. Tang, COVID-19: An Update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease, The American Journal of Chinese medicine, Vol. 48, No. 3, 2020, pp. 737-762, https://doi.org/10.1142/S0192415X20500378.[84] Y. F. Huang, C. Bai, F. He, Y. Xie, H. Zhou, Review on the Potential Action Mechanisms of Chinese Medicines in Treating Coronavirus Disease 2019 (COVID-19), Pharmacological Research, Vol. 158, No. 104939, 2020, pp. 1-10, https://doi.org/10.1016/j.phrs.2020.104939.[85] L. Xu, X. Zheng, Y. Wang, Q. Fan, M. Zhang, R. Li et al., Berberine Protects Acute Liver Failure in Mice Through Inhibiting Inflammation and Mitochondria-dependent Apoptosis, European Journal of Pharmacology, Vol. 819, 2018, pp. 161-168, https://doi.org/10.1016/j.ejphar.2017.11.013.[86] X. Chen, H. Guo, Q. Li, Y. Zhang, H. Liu, X. Zhang et al., Protective Effect of Berberine on Aconite‑induced Myocardial Injury and the Associated Mechanisms, Molecular Medicine Reports, Vol. 18, No. 5, 2018, pp. 4468-4476, https://doi.org/10.3892/mmr.2018.9476.[87] K. Hayashi, K. Minoda, Y. Nagaoka, T. Hayashi, S. Uesato, Antiviral Activity of Berberine and Related Compounds Against Human Cytomegalovirus, Bioorganic & Medicinal Chemistry Letters, Vol. 17, No. 6, 2007, pp. 1562-1564, https://doi.org/10.1016/j.bmcl.2006.12.085.[88] A. Warowicka, R. Nawrot, A. Gozdzicka Jozefiak, Antiviral Activity of Berberine, Archives of Virology, Vol. 165, No. 9, 2020, pp. 1935-1945, https://doi.org/10.1007/s00705-020-04706-3.[89] Z. Z. Wang, K. Li, A. R. Maskey, W. Huang, A. A. Toutov, N. Yang et al., A Small Molecule Compound Berberine as an Orally Active Therapeutic Candidate Against COVID-19 and SARS: A Computational and Mechanistic Study, FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, Vol. 35, No. 4, 2021, pp. e21360-21379, https://doi.org/10.1096/fj.202001792R.[90] A. Pizzorno, B. Padey, J. Dubois, T. Julien, A. Traversier, V. Dulière et al., In Vitro Evaluation of Antiviral Activity of Single and Combined Repurposable Drugs Against SARS-CoV-2, Antiviral Research, Vol. 181, No. 104878, 2020, https://doi.org/10.1016/j.antiviral.2020.104878.[91] B. Y. Zhang, M. Chen, X. C. Chen, K. Cao, Y. You, Y. J. Qian et al., Berberine Reduces Circulating Inflammatory Mediators in Patients with Severe COVID-19, The British Journal of Surgery, Vol. 108, No. 1, 2021, pp. e9-e11, https://doi.org/10.1093/bjs/znaa021.[92] K. P. Latté, K. E. Appel, A. Lampen, Health Benefits and Possible Risks of Broccoli - an Overview, Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association, Vol. 49, No. 12, 2011, pp. 3287-3309, https://doi.org/10.1016/j.fct.2011.08.019.[93] C. Sturm, A. E. Wagner, Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways, International Journal of Molecular Sciences, Vol. 18, No. 9, 2017, pp. 1890-1911, https://doi.org/10.3390/ijms18091890.[94] R. T. Ruhee, S. Ma, K. Suzuki, Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages, Antioxidants (Basel, Switzerland), Vol. 8, No. 12, 2019, pp. 577-589, https://doi.org/10.3390/antiox8120577.[95] S. M. Ahmed, L. Luo, A. Namani, X. J. Wang, X. Tang, Nrf2 Signaling Pathway: Pivotal Roles in Inflammation, Biochimica et Biophysica Acta Molecular Basis of Disease, Vol. 1863, No. 2, 2017, pp. 585-597, https://doi.org/10.1016/j.bbadis.2016.11.005.[96] Z. Sun, Z. Niu, S. Wu, S. Shan, Protective Mechanism of Sulforaphane in Nrf2 and Anti-Lung Injury in ARDS Rabbits, Experimental Therapeutic Medicine, Vol. 15, No. 6, 2018, pp. 4911-4951, https://doi.org/10.3892/etm.2018.6036.[97] H. Y. Cho, F. Imani, L. Miller DeGraff, D. Walters, G. A. Melendi, M. Yamamoto et al., Antiviral Activity of Nrf2 in a Murine Model of Respiratory Syncytial Virus Disease, American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 2, 2009, pp. 138-150, https://doi.org/10.1164/rccm.200804-535OC.[98] M. J. Kesic, S. O. Simmons, R. Bauer, I. Jaspers, Nrf2 Expression Modifies Influenza A Entry and Replication in Nasal Epithelial Cells, Free Radical Biology & Medicine, Vol. 51, No. 2, 2011, pp. 444-453, https://doi.org/10.1016/j.freeradbiomed.2011.04.027.[99] A. Cuadrado, M. Pajares, C. Benito, J. J. Villegas, M. Escoll, R. F. Ginés et al., Can Activation of NRF2 Be a Strategy Against COVID-19?, Trends in Pharmacological Sciences, Vol. 41, No. 9, 2020, pp. 598-610, https://doi.org/10.1016/j.tips.2020.07.003.[100] J. Gasparello, E. D'Aversa, C. Papi, L. Gambari, B. Grigolo, M. Borgatti et al., Sulforaphane Inhibits the Expression of Interleukin-6 and Interleukin-8 Induced in Bronchial Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein, Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, Vol. 87, No. 53583, 2021, https://doi.org/10.1016/j.phymed.2021.153583.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Liang zi li xue"

1

Yuan, Zushe. "Quan li yu zi you shi min she hui de ren xue kao cha /." Beijing : Zhongguo she hui ke xue chu ban she, 2003. http://books.google.com/books?id=oiY1AAAAMAAJ.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lau, Wai-hung. "The establishment of an electronic portfolio for Chinese language favours the development of students' language ability Wei Zhongguo yu wen ke jian dian zi hua xue xi li cheng dang an you zhu xue sheng yu wen neng li fa zhan /." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B40039973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chou, Kam-ngan. "The learning of Chinese lexicon by providing primary one pupils with essential learning experiences Kuo kuo xiao yi xue sheng de xue xi jing li yi ti sheng zhong wen ci hui liang /." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37642935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Wing Kin. "Mou Zongsan xian sheng li jie Laozi zhe xue de ping xi : dui "zhi de zhi jue" he "zong guan" liang gai nian zhi tan tao /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?HUMA%202009%20CHENG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Yongyi. "Dui "San yan" zhong fu nü zi sha de lun li xue fen xi = An analysis of the ethics of women suicide recorded in San Yan /." click here to view the abstract and table of contents, 2001. http://net3.hkbu.edu.hk/~libres/cgi-bin/thesisab.pl?pdf=b17088525a.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Kung Fong. "Cong jiao yu zhong "gai zao" nü xing : yi "Guangdong Sheng li di yi nü zi shi fan xue xiao" wei ge an yan jiu (1907-1938) /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?HUMA%202004%20CHAN.

Full text
Abstract:
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2004.<br>Includes bibliographical references (leaves 323-342). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
7

"基督敎與近代中國女子高等敎育: 華南女子文理學院的個案硏究". 2001. http://library.cuhk.edu.hk/record=b5895934.

Full text
Abstract:
朱峰.<br>"2001年3月"<br>論文 (哲學碩士)--香港中文大學, 2001.<br>參考文獻 (leaves 150-159)<br>附中英文摘要.<br>"2001 nian 3 yue"<br>Zhu Feng.<br>Lun wen (zhe xue shuo shi)--Xianggang Zhong wen da xue, 2001.<br>Can kao wen xian (leaves 150-159)<br>Fu Zhong Ying wen zhai yao.<br>論文提要 --- p.I<br>目錄 --- p.IV<br>序言 --- p.VI<br>Chapter 第一章 --- 導言 --- p.1<br>Chapter 一´Ø --- 槪念澄淸<br>Chapter 二´Ø --- 研究回顧<br>Chapter 第二章 --- 華南女子文理學院的歷史回溯 --- p.12<br>Chapter 一´Ø --- 佈道家辦學…程呂底亞時期(1908-1925)<br>Chapter 二´Ø --- 教育家辦學…盧愛德時期(1925-1927)<br>Chapter 三´Ø --- 華人治校……王世靜時期(1928-1951)<br>Chapter 第三章 --- 社會角色的變遷:服務教會與服務社會的互動 --- p.50<br>Chapter 一´Ø --- 直接服務教會(1908-1927)<br>Chapter 二´Ø --- 從服務教會到服務社會(1927´ؤ1949)<br>Chapter 三´Ø --- “爲人民服務´ح的嘗試(1949一1951)<br>Chapter 第四章 --- 教育角色的實踐:基督教女子高等教育的特點 --- p.77<br>Chapter 一´Ø --- 宗教教育與愛國主義<br>Chapter 二´Ø --- 女權辯論與家政專業<br>Chapter 三´Ø --- 校友統計與個案分析<br>Chapter 第五章 --- 性別角色的追尋:與福建協和大學的合倂爭論 --- p.114<br>Chapter 一´Ø --- 合倂爭論的困擾<br>Chapter 二´Ø --- 合倂爭論的分析<br>Chapter 三´Ø --- 合倂爭論的意義<br>結語 --- p.133<br>參考書目<br>附錄一 :2000年度問卷調˘¬表和基本數據<br>附錄二:華南女子文理學院學生畢業論文題目(部分)<br>附錄三:華南女子文理學院教職員工履歷表<br>附錄四:金陵女院與華南女院各項統計數字比照(1934年)<br>附錄五:華南女子文理學院財政收入比例變化表<br>附錄五:中外人名漢/英對照表
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Liang zi li xue"

1

Liang zi li xue. 5th ed. Ke xue chu ban she, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liang zi li xue yuan li. Beijing da xue chu ban she, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liang zi li xue jiao cheng. 3rd ed. Ke xue chu ban she, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Da xue wu li xue: Liang zi wu li. 2nd ed. Qing hua ta xue chu ban she, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gao deng liang zi li xue. 3rd ed. Bei jing ta xue chu ban she, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liang zi li xue yan yi. Ke xue chu ban she, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Da xue wu li xue: Guang xue liang zi wu li. 3rd ed. Qing hua ta xue chu ban she, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1933-, Xu Yuanzhi, ed. Tang Aoqing zhi liang zi li xue. Zhejiang da xue chu ban she, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

ru, Yang zhan. Liang zi tong ji wu li xue. Gao deng jiao yu chu ban she, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao deng liang zi li xue: [Ying wen ben]. Shi jie tu shu chu ban gong si bei jing gong si, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!