Contents
Academic literature on the topic 'LIBS (spectroscopie de plasma induit par laser)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LIBS (spectroscopie de plasma induit par laser).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LIBS (spectroscopie de plasma induit par laser)"
Vandevelde, Ségolène, Jean-Luc Lacour, Céline Quéré, Lionel Marie, Christophe Petit, and Ludovic Slimak. "Identification du rythme annuel de précipitation des carbonates pariétaux pour un calage micro-chronologique des occupations archéologiques pyrogéniques : cas de la Grotte Mandrin (Malataverne, Drôme, France)." BSGF - Earth Sciences Bulletin 192 (2021): 9. http://dx.doi.org/10.1051/bsgf/2021002.
Full textYu, Jin, and Vincent Motto-Ros. "Spectroscopie du plasma induit par laser pour l'analyse de matière organique." Photoniques, no. 63 (January 2013): 38–43. http://dx.doi.org/10.1051/photon/20136338.
Full textHermann, Jörg, Chao Shen, Antonio Hermann, Olivier Aleixo da Luz, Aya Taleb, and Frédéric Pelascini. "Analyse élémentaire : Des matériaux sans étalonnage." Photoniques, no. 103 (July 2020): 46–49. http://dx.doi.org/10.1051/photon/202010346.
Full textMasson, Pierre, Anne Gallet-Budynek, and Julian Guezenoc. "LIBS et XRF : deux techniques pour la mesure rapide des éléments nutritifs dans les sols." IVES Technical Reviews, vine and wine, November 12, 2020. http://dx.doi.org/10.20870/ives-tr.2020.4518.
Full textDissertations / Theses on the topic "LIBS (spectroscopie de plasma induit par laser)"
Mothe, Emilien. "Spectroscopie de plasma induit par laser appliquée à la détection de résidus d'explosifs." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22134.
Full textThe threat of terrorist attacks remains omnipresent in many high traffic sites. A technique capable of detecting explosives is needed to best address this threat. Initiated by the Ministère de la Défense and the Direction Générale de l’Armement, the project REI ExploLIBS aims to explore the potential of laser-induced breakdown spectroscopy to detect explosive residue. Experimental and theoretical studies are carried out by Bertin Technologies in collaboration with the LP3 laboratory – UMR 6182. The ablation of polymers under different atmospheres permits to characterize the spatial and temporal evolution of the emission of the CN and the C2 molecules. The radius of emission, the temperature and the decrease of the intensity are related to the formation process of the molecules. The additional analysis by the calculation of the composition of the plasma in local thermodynamic equilibrium reveals the presence of molecules in high concentrations in the plasma that are difficult to visualise in optical spectroscopy. These studies led to the development of a portable sensor dedicated to the detection of explosives. The detection rate is estimated at over 90% and the false positive rate below 5%. The current sensitivity limit is estimated at 55 µg.cm-2
Mercadier, Laurent. "Spectrocopie de plasma induit par laser pour l'analyse des composants face au plasma de tokamaks : étude paramétrique et mesures autocalibrées." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22071/document.
Full textDuring the operation of a nuclear fusion device like the future reactor ITER, a fraction of tritium is trapped in the plasma facing components and has to be measured in order to fulfill nuclear safety requirements. Laser-induced breakdown spectroscopy is proposed to achieve this measurement. The laser plasma produced on carbon fibre composite tiles from the Tore Supra reactor is analyzed via a parametric study : it has to have a temperature over 10000 K and an electron density over 10^17 cm^-3 to optimize the application. A calibration-free procedure that takes into account self-absorption is proposed to determine the relative concentration of hydrogen from the experimental spectra. The time- and space-resolved spectral emission of the plasma plume is investigated and reveals the presence of a temperature gradient from the core towards the periphery. This gradient is taken into account and the H/C concentration ratio is deduced. The accuracy of the results is evaluated and discussed. The study of the D/H isotopic ratio under low pressure argon reveals the presence of plume segregation that leads to an error of about 50%, error that can partially be reduced. Tungsten materials are investigated and difficulties related to spectroscopic databases are discussed. Finally, the feasibility of LIBS analysis with depth resolution is validated for multilayered metallic samples
Bernon, Céline. "La spectroscopie de plasma induit par laser ou LIBS (Laser-Induced Breakdown Spectroscopy) appliquée à l’analyse de surfaces contaminées par des toxiques liquides." Thesis, Paris, CNAM, 2013. http://www.theses.fr/2013CNAM0917.
Full textLaser-Induced Breakdown Spectroscopy (LIBS) is currently used in many fields of activity,thanks to its numerous uses. This technology allows fast measurement (10-6 s), with in situconfiguration, at ambient pressure and temperature, of different samples in gaseous, liquidor solid phase. These performances present a high interest for military applications to detectchemical agent traces on surfaces. The aim of this study is to investigate the potential of thistechnology in the detection of specific chemical atoms of live agents such as phosphorus,fluorine, chlorine, and sulfur on the surface of contaminated samples representing thetheatre. In order to improve the analytical performances of classical technical LIBS of singlepulse, a double pulse method was developed and compared to single pulse method. Itsprinciple is based on the emission of two successive laser impulsions resolved in space andtime, generating in the focal point thermal plasma which relaxes in fine emitting specificradiation of the elementary composition. The analytical gains, as for detection thresholdsare evaluated for each type of samples. A comparison of the detection thresholds isestablished
El, Haddad Josette. "Chimiométrie appliquée à la spectroscopie de plasma induit par laser (LIBS) et à la spectroscopie terahertz." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00959288.
Full textFaye, Cheikh Benoit. "Détection des polluants métalliques particulaires dans les liquides par la spectroscopie de plasma induit par laser." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10099/document.
Full textWater pollution is a major concern, as noted by the European Community. This problem is accentuated with metallic particles and the emergence of nanostructured products such as Nano-Objects, their Aggregates and their Agglomerates (NOAA). These are the special types of pollutants owing their physicochemical properties. The monitoring and control of these pollutants in water require the development of measurement instruments which are capable to anwer this environmental problem. In this context, the technique of Laser-Induced Breakdown Spectroscopy (LIBS) has been developed at INERIS. It not only allows the chemical identification of these particles pollutants present in liquids, but also the determination of their concentrations in situ and in real time. This thesis has optimized the analysis of suspensions by LIBS with two sampling modes. The first mode focused on coupling LIBS with a liquid jet in which the detection limits of titanium dioxide were estimated at 0.5 mg/L. In the second mode, the suspensions were aerosolized with a nebulizer and analyzed by LIBS. The results obtained by comparing these two sampling modes show that the liquid jet may be advantageous for the analysis of suspensions. However, the aerosol mode has a practical interest if it has an aerosolization efficiency of over 50%. Finally, this work demonstrates the applicability of LIBS as a potential tool for in situ particle analysis of suspensions such as monitoring and control of wastewater
Ismaël, Amina. "Une évaluation des performances analytiques de la spectroscopie sur plasma induit par laser (LIBS)." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14357/document.
Full textLaser-Induced Breakdown Spectroscopy (LIBS) is an elemental analytical technique which combines laser ablation with atomic emission spectroscopy. LIBS spectroscopy has many advantages but is not recognized as a fully quantitative method. Indeed, the problem of samples' heterogeneity, matrix effects, self-absorption of emission lines and the lack of repeatability deteriorate the analytical performances of LIBS. In order to improve this technique, the work presented in this thesis includes an example of analytical performances evaluation with the use of quality notions of a laboratory LIBS system. The method is here specially applied to the analysis of certified steel samples. A first study deals with the optimization of the LIBS system for the quantitative analysis. As the effect of the different experimental parameters on LIBS signal is complex, a methodical protocol is necessary. Here, a parametric study is proposed to determine the experimental conditions suitable for quantitative analysis. Once optimized, the LIBS method is then characterized with basics of method validation. The trueness and the precision of the method are evaluated in conditions of repeatability and intermediate precision. This study shows promising results for LIBS technique. The application of a control chart reveals however an instability of the laboratory system and enables to introduce corrective actions to improve its analytical performances
Sirven, Jean-Baptiste. "Détection de métaux lourds dans les sols par spectroscopie d'émission sur plasma induit par laser (LIBS)." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00122546.
Full textDans cette thèse nous montrons d'abord que le régime femtoseconde ne présente pas d'avantages par rapport au régime nanoseconde standard pour notre problématique. Ensuite nous mettons en œuvre un traitement avancé des spectres LIBS par des méthodes chimiométriques dont les performances améliorent sensiblement les résultats des analyses qualitatives et quantitatives d'échantillons de sols.
Castello, Maryline. "Développement de l'analyse de l'or des minerais par spectroscopie d'émission de plasma induit par laser (LIBS)." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/33029.
Full textNumerous rock samples are taken daily from gold mines and sent to laboratories to measure their gold content. A 48-hour delay in the delivery of results may force mining operators making operational decisions prior to knowing the results. To address this issue, the emerging Laser-Induced Breakdown Spectroscopy (LIBS) technology provides in-situ real-time quantitative gold analysis. First, this technique was performed by Rifai K. (NRCBoucherville postdoctoral fellow), bringing the gold detection limit to about 0.7 ppm on all types of samples encountered in mining operations (powders, rocks to all comers, cores ...). This value corresponds to the detection limit of the device desired by the mining companies. In fact, the concentrations found in the gold deposits are generally greater than 0.7 ppm. However, some mines have a cut-off grade at this value, or in this order of magnitude. This master’s project was set up to calibrate and validate this technique. For this, petrographic and mineralogical studies of representative lithologies will be combined with quantitative X-ray fluorescence (XRF) analysis. All of these results will provide a better understanding of the LIBS signal. Subsequently, these LIBS results will be validated by being compared with fire assay gold measurements provided by laboratories external to the project. This master’s thesis demonstrate that LIBS is a very promising method, with a percentage error (<100%) in line with that of laboratories for a faster and non-destructive method. In fact, by comparing the gold content results obtained by conventional chemical analysis from two different laboratories, the relative standard deviations on the samples that used the silica-rich calibration curve of LIBS, irrespective of the mine, are less than 100%, but becomes greater than 200% for samples using the calibration curve rich in iron and sulfur (Casa Berardi, Westwood and LaRonde mines). The gold contents obtained with LIBS, compared with the external laboratories show that the LIBS technique is very promising with relative standard deviation lower than 100%, regardless of the calibration curve used and the form of the material analyzed. The relative standard deviation between laboratories and LIBS is often lower than that found between the two laboratories. So, the LIBS technique is a very promising method. Similarly, it is possible to note an undervaluation of gold grades on rock samples and drill cores, due to the heterogeneous nature of the distribution of gold on these surfaces. However, the powder samples having a better homogeneity have a lower error percentage (<50%) and therefore a better accuracy on this type of material. In order to solve the problem of undervaluation on rocks and cores, it would be interesting to use the "k-nearest neighbors" method to take into account and statistically study censored data, i.e. those gold grades below the detection limit of the LIBS device. Currently, a generalization of these results is not yet possible due to the number of samples analyzed, but they remain very promising for the continuation of this project.
Farah, Sougueh Ali. "Spectroscopie optique d’émission et spectroscopie laser pour le diagnostic des plasmas induits par laser." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2066/document.
Full textLaser induced plasma (LIP) which was first reported in the beginning of sixties, has achieved a great interest as a source of spectroscopic data. It has also many applications like X-ray sources for lithography, plasma igniters, pulsed laser deposition or it has become a basis of a very popular analytical technique – LIBS (laser induced breakdown spectroscopy). The latter is mainly due to its applicability to different kinds of samples, no sample preparation or in-situ and remote sensing capability. However, LIBS measurements are laterally integrated and Abel inversion must be performed. Also the method assumes the plasma to be in local thermodynamic equilibrium (LTE). In order to validate LIBS measurements, Thomson scattering (TS) method which is spatially resolved and free from equilibrium assumption was applied. Thus, ablation and breakdown plasmas were characterized by both two methods. Comparison between plasma parameters (temperature and electron density) obtained by the two methods and McWhirter criterion as well as relaxation times and diffusion lengths of species in the plasma allowed to estimate LTE
Leone, Nicolas. "Développement d'une technique d'analyse hautement sensible et polyvalente par spectroscopie de plasma induit par laser : applications aux aérosols et aux matériaux biologiques." Phd thesis, Paris 6, 2007. http://pastel.archives-ouvertes.fr/pastel-00004873.
Full text