Dissertations / Theses on the topic 'Lie algebras][Jordan algebras'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Lie algebras][Jordan algebras.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bertram, Wolfgang. "The geometry of Jordan and Lie structures /." Berlin [u.a.] : Springer, 2000. http://www.loc.gov/catdir/enhancements/fy0816/00066150-d.html.
Full textAmmar, Gregory, Christian Mehl, and Volker Mehrmann. "Schur-Like Forms for Matrix Lie Groups, Lie Algebras and Jordan Algebras." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501032.
Full textBarton, Christine H. "Magic squares of Lie algebras." Thesis, University of York, 2000. http://etheses.whiterose.ac.uk/10884/.
Full textRicciardo, Antonio. "Lie algebras and triple systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8712/.
Full textShlaka, Hasan Mohammed Ali Saeed. "Jordan-Lie inner ideals of finite dimensional associative algebras." Thesis, University of Leicester, 2018. http://hdl.handle.net/2381/42787.
Full textDuong, Minh thanh. "A new invariant of quadratic lie algebras and quadratic lie superalgebras." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS021/document.
Full textIn this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7
Duong, Minh-Thanh. "A new invariant of quadratic lie algebras and quadratic lie superalgebras." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00673991.
Full textChung, K.-W. "3-dimensional symplectic geometries and metasymplectic geometries." Thesis, University of York, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235018.
Full textSilva, Diogo Diniz Pereira da Silva e. "Identidades graduadas em álgebras não-associativas." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306367.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-17T03:42:15Z (GMT). No. of bitstreams: 1 Silva_DiogoDinizPereiradaSilvae_D.pdf: 1168055 bytes, checksum: 49c676076235e3eef6f8a27594f092f7 (MD5) Previous issue date: 2010
Resumo: Neste trabalho apresentamos um estudo sobre identidades polinomiais graduadas em álgebras não associativas. Mais precisamente estudamos as identidades polinomiais graduadas da álgebra de Lie das matrizes de ordem 2 com traço zero com as três graduações naturais, a Z2-graduação, a Z2 _ Z2-graduação e a Z-graduação, neste caso conseguimos uma nova demonstração baseada em métodos elementares dos resultados de [27] que não se baseia em resultados da Teoria de Invariantes, estes resultados foram publicados em [30]. Estudamos também as identidades graduadas da álgebra de Jordan das matrizes simétricas de ordem 2, neste caso obtivemos bases para as identidades graduadas dessa álgebra de Jordan em todas as possíveis graduações, obtivemos também bases para as identidades fracas para os pares (Bn; Jn) e (B; J), onde Bn e B denotam as álgebras de Jordan de uma forma bilinear simétrica não degenerada nos espaços vetoriais Vn e V respectivamente, onde Vn tem dimensão n e V tem dimensão 1, esses resultados estão no artigo [29], aceito para publicação
Abstract: In this thesis we study graded identities in non associative algebras. Namely we study graded polynomial identities for the Lie algebra of the 2_2 matrices with trace zero with it's three natural gradings, the Z2-grading, the Z2_Z2-grading and the Z-grading, in this case we obtained a new proof of the results of [27] that doesn't involve use of Invariant Theory, this results were published in [30]. We also studied the graded identities of the Jordan algebra of the symmetric matrices of order two, we obtained basis for the graded identities of this Jordan algebra in all possible gradings, we also obtained basis for the weak identities of the pairs (Bn; Jn) and (B; J), where Bn and B are the Jordan algebras of a symmetric bilinear form in a the vector spaces Vn and V respectively, where Vn has dimension n and V has countable dimension, this results are in the article [29], accepted for publication
Doutorado
Álgebra Não-Comutativa
Doutor em Matemática
Hidri, Samiha. "Formes bilinéaires invariantes sur les algèbres de Leibniz et les systèmes triples de Lie (resp. Jordan)." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0237/document.
Full textIn this thesis, we study the stucture of several types of algebras endowed with Symmetric, non degenerate and invariant bilinear forms. In the first part, we study quadratic Leibniz algebras. First, we prove that these algebras are symmetric. Then, we use the T*-extension and the double extension to prove some properties of this type of Leibniz algebras. Besides, since we observe that the skew-symmetry of the Leibniz bracket gives rise to other types of invariance for a bilinear form on a Leibniz algebra: The left invariance and the right invariance. We focus on the study of left (resp. right) Leibniz algebras with symmetric, non degenerate and left (resp. right) invariant bilinear form. In particular, we prove that these algebras are Lie admissibles. The second part of this work is dedicated to the study of quadratic Lie triple systems and pseudo-euclidien Jordan triple systems. We start by giving an inductive description of quadratic Lie triple systems using double extension. Next, we introduce the T*-extension of Jordan triple systems. Finally, we give new caracterizations of semi-simple Jordan triple systems among pseudo-euclidian Jordan triple systems
Pinzon, Daniel F. "VERTEX ALGEBRAS AND STRONGLY HOMOTOPY LIE ALGEBRAS." UKnowledge, 2006. http://uknowledge.uky.edu/gradschool_diss/382.
Full textTraustason, Gunnar. "Engel Lie algebras." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334292.
Full textEddy, Scott M. "Lie Groups and Lie Algebras." Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1320152161.
Full textBen, Abdeljelil Amine. "Generalized Derivations of Ternary Lie Algebras and n-BiHom-Lie Algebras." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7743.
Full textHe, Xiao. "W-algebras Associated to Truncated Current Lie Algebras." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/30327.
Full textGiven a finite-dimensional semi-simple Lie algebra g and a non-zero nilpotent element e 2 g, one can construct various W-algebras associated to (g; e). Among them, the affine W-algebra is a vertex algebra which can be realized through semi-infinite cohomology, and the finite W-algebra is the Zhu algebra of the affineW-algebra. In the constructions ofW-algebras, a non-degenerate invariant bilinear form and a good Z-grading of g play essential roles. Truncated current Lie algebras associated to g are quotients of the current Lie algebra g C[t]. One can show that non-degenerate invariant bilinear forms exist on truncated current Lie algebras and a good Z-grading of g induces good Z-gradings of truncated current Lie algebras. The constructions of W-algebras can thus be adapted to the setting of truncated current Lie algebras. The main results of this thesis are as follows. First, we introduce finite and affine W-algebras associated to truncated current Lie algebras and generalize some properties of W-algebras associated to semi-simple Lie algebras. Second, we develop an adjusted version of semi-infinite cohomology, which helps us to define affine W-algebras associated to general nilpotent elements in a uniform way. Finally, we consider vertex operator algebras in general, and show that their higher level Zhu algebras are all isomorphic to subquotients of their universal enveloping algebras.
Williams, Michael Peretzian. "Nilpotent N-Lie Algebras." NCSU, 2004. http://www.lib.ncsu.edu/theses/available/etd-02162004-083708/.
Full textLevene, Rupert Howard. "Lie semigroup operator algebras." Thesis, Lancaster University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421841.
Full textHillman, Rebecca Ann. "Relationship between Symmetric Brace Algebras and Pre-Lie Algebras." NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-03292005-215238/.
Full textChopp, Mikaël. "Lie-admissible structures on Witt type algebras and automorphic algebras." Thesis, Metz, 2011. http://www.theses.fr/2011METZ020S/document.
Full textThe Witt algebra has been intensively studied and arise in many research fields in Mathematics. We are interested in two generalizations of the Witt algebra: the Witt type algebras and the Krichever-Novikov algebras. In a first part we study the problem of finding Lie-admissible structures on Witt type algebras. We give all third-power associative Lie-admissible structures and flexible Lie-admissible structures on these algebras. Moreover we study the symplectic forms which induce a graded left-symmetric product. In the second part of the thesis we study the automorphic algebras. Starting from arbitrary compact Riemann surfaces we consider the action of finite subgroups of the automorphism group of the surface on certain geometrically defined Lie algebras as the Krichever-Novikov type algebras. More precisely, we relate for G a finite subgroup of automorphism acting on the Riemann surface, the invariance subalgebras living on the surface to the algebras on the quotient surface under the group action. The almost-graded Krichever-Novikov algebras structure on the quotient gives in this way a subalgebra of a certain Krichever-Novikov algebra (with almost-grading) on the original Riemann surface
Jamjoom, Fatmah B. "On the tensor products of JC-algebras and JW-algebras." Thesis, University of Reading, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258348.
Full textAlajaji, Sami E. (Sami Emmanuel). "Central filtrations of Lie algebras." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22714.
Full textAlekseevsky, Dmitri, Peter W. Michor, Wolfgang Ruppert, and Peter Michor@esi ac at. "Extensions of Super Lie Algebras." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi980.ps.
Full textGardini, Matteo. "Representations of semisimple Lie algebras." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9029/.
Full textGarcía, Butenegro Germán. "Hom-Lie algebras and deformations." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-43661.
Full textYaseen, Hogar M. "Generalized root graded Lie algebras." Thesis, University of Leicester, 2018. http://hdl.handle.net/2381/42765.
Full textRoberts, Kieran. "Lie algebras and incidence geometry." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3483/.
Full textSilva, Viviane Moretto da. "Algebras de Lie finitamente apresentaveis." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306934.
Full textDissertação (mestrado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Científica
Made available in DSpace on 2018-08-04T04:02:42Z (GMT). No. of bitstreams: 1 Silva_VivianeMorettoda_M.pdf: 772022 bytes, checksum: df78c072210885081ecac3c1e89b04fd (MD5) Previous issue date: 2005
Resumo: Nesta dissertação de mestrado, estudamos propriedades de álgebras de Lie. As Álgebras de Lie têm grande importância nao somente na teoria de álgebras não associativas, elas surgem também em geometria, topologia e no estudo da teoria de grupos por exemplo. As definições e resultados básicos sobre álgebras de Lie estão inclusos no Capítulo 2. Para esta parte do trabalho, utilizamos os livros [1] e [2]. O nosso enfoque foi sobre álgebras universais envelopantes, mergulhando assim a álgebra de Lie em álgebras associativas (Seções 2.4, 2.5 e 2.6). O objetivo principal da dissertação foi estudar o artigo [4], ¿Finite presentation of abelian-by-finite dimensional Lie algebras¿, que classifica álgebras de Lie finitamente apresentáveis (no sentido de serem definidas por número finito de geradores e relações) que são extensões de ideal abeliano por álgebra de Lie de dimensão finita. Definimos álgebras de Lie livres na seção 2.7.Tratam-se de objetos na categoria de álgebras de Lie que satisfazem propriedade universal semelhante a definição de grupos livres. A classificação de álgebras de Lie que são extensões de ideal abeliano por álgebra de Lie de dimensão finita usa teoria de módulos Noetherianos. No Capítulo 1 incluímos resultados básicos sobre módulos, em particular estudamos módulos Noetherianos, não necessariamente sobre anéis comutativos (para este estudo utilizamos [9]), embora alguns resultados sejam válidos somente no caso onde o anel básico é comutativo (caso do Teorema da Base de Hilbert 1.31 no Capítulo 1). No final, nos Capítulos 3 e 4, explicamos de maneira bem minuciosa (com mais 6 detalhes que o original) o resultado principal de [4], que 'e apresentado na página 42: Proposicão 3.2: Seja L uma álgebra de Lie finitamente gerada sobre o corpo K. Suponha que L tenha um ideal abeliano A tal que L/A tem dimensão finita como espaço vetorial. Seja R álgebra universal envelopante de L/A. Suponha também que o quadrado tensorial A X A é finitamente gerado como R-módulo sobre a ação diagonal. Então L é finitamente apresentável. Os métodos da demonstração de 3.2 envolvem muitos cálculos com relações em L para mostrar que um conjunto finito E 'e suficiente para gerar todas as relações em L. Embora os cálculos sejam muitos, a técnica principal 'e a indução e a Identidade de Jacobi. A teoria de módulos Noetherianos também foi muito utilizada
Abstract: In this work we study the classification of finitely presented abelian-by-finite dimensional Lie algebras given in [4]. If L is a Lie algebra, an extension of an abelian ideal A by a finite dimensional Lie algebra L/A then L is finitely presented if and only if A X A is finitely generated as U(L/A)-module via the diagonal action, where U(L/A) is the universal enveloping algebra of L/A. We study in detail the result that finite generation of A X A over U(L/A) implies finite presentability of L
Mestrado
Matematica
Mestre em Matemática
Carr, Andrew Nickolas. "Lie Algebras and Representation Theory." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/1988.
Full textKnibbeler, Vincent. "Invariants of automorphic Lie algebras." Thesis, Northumbria University, 2015. http://nrl.northumbria.ac.uk/23590/.
Full textTopley, Lewis William. "Centralisers in classical Lie algebras." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/centralisers-in-classical-lie-algebras(4138e280-d893-443e-b7f2-c30855dc82ee).html.
Full textNilsson, Jonathan. "Simple Modules over Lie Algebras." Doctoral thesis, Uppsala universitet, Algebra och geometri, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-283061.
Full textMacDonald, Mark Lewis. "Cohomological invariants of Jordan algebras." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612273.
Full textBurroughs, Nigel John. "The quantisation of Lie groups and Lie algebras." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358486.
Full textKrook, Jonathan. "Overview of Lie Groups and Their Lie Algebras." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275722.
Full textLiegrupper kan ses som grupper som även är glatta. Målet med den här rapporten är att definiera Liegrupper som glatta mångfalder, och att undersöka några av liegruppernas egenskaper. Till varje Liegrupp kan man relatera ett vektorrum, som kallas Liegruppens Liealgebra. Vi kommer undersöka vilka egenskaper hos en Liegrupp som kan härledas från dess Liealgebra. Som tillämpning kommer vi karaktärisera alla unitära irreducibla ändligtdimensionella representationer av Liegruppen SO(3).
Palmieri, Riccardo. "Real forms of Lie algebras and Lie superalgebras." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9448/.
Full textJakovljevic, Cvjetan, and University of Lethbridge Faculty of Arts and Science. "Conformal field theory and lie algebras." Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 1996, 1996. http://hdl.handle.net/10133/37.
Full textiv, 80 leaves : ill. ; 28 cm.
Dell'Arciprete, Alice. "Good gradings of simple Lie algebras." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17105/.
Full textEllinas, D. "Studies in Lie and quantum algebras." Helsinki : Societas scientiarum Fennica, 1990. http://catalog.hathitrust.org/api/volumes/oclc/58497933.html.
Full textat, Andreas Cap@esi ac. "Graded Lie Algebras and Dynamical Systems." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1086.ps.
Full textWestrich, Quinton. "Lie Algebras in Braided Monoidal Categories." Thesis, Karlstad University, Faculty of Technology and Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-397.
Full textWe begin by recalling some basic definitions from Lie algebra theory to motivate our subsequent transition to the more general setting of category theory. Next, we develop a relatively self-contained introduction to those areas of category theory needed for an understanding of what follows. Here we also motivate and introduce the graphical calculus notations. We then state the definitions of a braided commutator algebra, a braided Lie algebra, and a braided commutator Lie algebra. We proceed to show that color Lie algebras and Lie superalgebras are examples of braided Lie algebras. Thus, we are interested in examining color Lie algebras and Lie superalgebras in the generalized setting of braided Lie algebras. So we end by examining the representation theory of braided Lie algebras and braided commutator Lie algebras. In paricular, we find analogues of the adjoint representation, the tensor product representation, and the contragredient representation.
Frisk, Anders. "On Stratified Algebras and Lie Superalgebras." Doctoral thesis, Uppsala : Department of Mathematics, Uppsala university, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7781.
Full textFletcher, Paul. "Lie algebras : infinite generalizations and deformations." Thesis, Durham University, 1990. http://etheses.dur.ac.uk/6187/.
Full textParker, Mychelle. "Semisimple Subalgebras of Semisimple Lie Algebras." DigitalCommons@USU, 2020. https://digitalcommons.usu.edu/etd/7713.
Full textAltassan, Alaa Abdullah. "Linear equations over free Lie algebras." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/linear-equations-over-free-liealgebras(6e29b286-1869-4207-b054-8baab98e70df).html.
Full textPike, Jeffrey. "Quivers and Three-Dimensional Lie Algebras." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32398.
Full textWood, Lisa M. "ON THE SOLVABLE LENGTH OF ASSOCIATIVE ALGEBRAS, MATRIX GROUPS, AND LIE ALGEBRAS." NCSU, 2004. http://www.lib.ncsu.edu/theses/available/etd-10272004-164622/.
Full textShabanskaya, Anastasia V. "Classification of Six Dimensional Solvable Indecomposable Lie Algebras with a codimension one nilradical over ℝ." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1301590879.
Full textCao, Mengyuan. "Representation Theory of Lie Colour Algebras and Its Connection with the Brauer Algebras." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38125.
Full textChang, Hao [Verfasser]. "Varieties of elementary Lie algebras / Hao Chang." Kiel : Universitätsbibliothek Kiel, 2016. http://d-nb.info/1105472140/34.
Full textZusmanovich, Pasha. "Low-dimensional cohomology of current Lie algebras." Doctoral thesis, Stockholm : Department of Mathematics, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-37768.
Full text