To see the other types of publications on this topic, follow the link: Lie group.

Books on the topic 'Lie group'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Lie group.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Duistermaat, J. J. Lie groups. Berlin: Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bröcker, Theodor. Representations of compact Lie groups. New York: Springer-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bröcker, Theodor. Representations of compact Lie groups. 2nd ed. New York: Springer, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sabinin, Lev V. Mirror geometry of lie algebras, lie groups, and homogeneous spaces. New York: Kluwer Academic Publishers, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Onishchik, Arkadij L. Lie Groups and Algebraic Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Akhiezer, Dmitri N. Lie Group Actions in Complex Analysis. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-80267-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Akhiezer, Dmitri N. Lie group actions in complex analysis. Wiesbaden: Vieweg, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ibragimov, Nail H. Selected works: Lie group analysis, differential equations, Riemannian geometry, Lie-Ba cklund groups, mathematical physics. Karlskrona: ALGA Publications, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Robert, Gilmore. Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists. Leiden: Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heinrich, Hofmann Karl. Lie groups and subsemigroups with surjective exponential fuction. Providence, R.I: American Mathematical Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Liao, Ming. Invariant Markov Processes Under Lie Group Actions. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Karl, Strambach, ed. Loops in group theory and lie theory. Berlin: Walter de Gruyter, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tanner, Elizabeth A. Noncompact Lie Groups and Some of Their Applications. Dordrecht: Springer Netherlands, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

1959-, McGovern William M., ed. Nilpotent orbits in semisimple Lie algebras. New York: Van Nostrand Reinhold, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ibragimov, N. Kh. Elementary Lie group analysis and ordinary differential equations. Chichester: Wiley, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kim, Peter T. Group representations and nonparametric density and deconvolution estimation on compact Lie groups. Toronto: University of Toronto, Dept. of Statistics, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Timmesfeld, Franz Georg. Abstract Root Subgroups and Simple Groups of Lie-Type. Basel: Birkhäuser Basel, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ibragimov, N. Kh. Applications of Lie group analysis in geophysical fluid dynamics. Beijing, China: Higher Education Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

author, Pianzola Arturo 1955, ed. Torsors, reductive group schemes and extended affine lie algebras. Providence, Rhode Island: American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kh, Ibragimov N., ed. CRC handbook of Lie group analysis of differential equations. Boca Raton: CRC Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ibragimov, N. Kh. Applications of Lie group analysis in geophysical fluid dynamics. Beijing, China: Higher Education Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tao, Terence. Expansion in finite simple groups of Lie type. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Goebel, Roman. The group of orbit preserving G-homeomorphisms of an equivariant simplex for G: A Lie group. Helsinki: Suomalainen Tiedeakatemia, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

European School of Group Theory (1993 Trento, Italy). Representations of Lie groups and quantum groups: Proceedings of the European School of Group Theory, 1993. Edited by Baldoni Velleda and Picardello Massimo A. 1949-. Harlow: Longman Scientific & Technical, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

1949-, Baldoni M. Welleda, Picardello Massimo A. 1949-, and European School of Group Theory (1993 : Trento, Italy), eds. Representations of Lie groups and quantum groups. Harlow, Essex, England: Longman Scientific & Technical, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Thangavelu, Sundaram. Harmonic Analysis on the Heisenberg Group. Boston, MA: Birkhäuser Boston, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rosinger, Elemér E. Parametric Lie Group Actions on Global Generalised Solutions of Nonlinear PDEs. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9076-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Vilenkin, N. I͡A. Representation of Lie groups and special functions: Recent advances. Dordrecht: Kluwer Academic Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Schempp, W. Harmonic analysis on the Heisenberg nilpotent Lie group, with applications to signal theory. Harlow: Longman Scientific & Technical, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fässler, Albert. Group theoretical methods and their applications. Boston: Birkhäuser, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Thomas, Hawkins. Emergence of the Theory of Lie Groups: An Essay in the History of Mathematics 1869-1926. New York, NY: Springer New York, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ismagilov, R. S. Representations of infinite-dimensional groups. Providence, R.I: American Mathematical Society, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jürgen, Fuchs. Affine Lie algebras and quantum groups: An introduction, with applications in conformal field theory. Cambridge [England]: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Cohn, P. M. Lie Group. Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Duistermaat, J. J., and J. A. C. Kolk. Lie Groups (Universitext). Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Li, Fanzhang, Li Zhang, and Zhao Zhang. Lie Group Machine Learning. de Gruyter GmbH, Walter, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Fanzhang. Lie Group Machine Learning. De Gruyter, Inc., 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Fanzhang, Li Zhang, and Zhao Zhang. Lie Group Machine Learning. de Gruyter GmbH, Walter, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Carter, Roger W. Simple Groups of Lie Type. Wiley & Sons, Incorporated, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Carter, Roger W. Simple Groups of Lie Type. Wiley, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bröcker, T., and T. Tom Dieck. Representations of Compact Lie Groups. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bröcker, T., and T. tom Dieck. Representations of Compact Lie Groups. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Strambach, Karl, and Péter Nagy. Loops in Group Theory and Lie Theory. de Gruyter GmbH, Walter, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Matrix groups: An introduction to Lie group theory. London: Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Baker, Andrew. Matrix Groups: An Introduction to Lie Group Theory. Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Baker, Andrew. Matrix Groups: An Introduction to Lie Group Theory. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Representations of finite and Lie groups. London: Imperial College Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sabinin, Lev V. Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mirror Geometry of Lie Algebras, Lie Groups and Homogeneous Spaces. Springer London, Limited, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ibragimov, Nail H. Lie group analysis: Classical heritage. ALGA publications, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography