Academic literature on the topic 'Lie groups and Lie algebras'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lie groups and Lie algebras.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lie groups and Lie algebras"
Wüstner, Michael. "Splittable Lie Groups and Lie Algebras." Journal of Algebra 226, no. 1 (April 2000): 202–15. http://dx.doi.org/10.1006/jabr.1999.8162.
Full textLord, Nick, and N. Bourbaki. "Lie Groups and Lie Algebras (Chapters 1-3)." Mathematical Gazette 74, no. 468 (June 1990): 199. http://dx.doi.org/10.2307/3619408.
Full textMikami, Kentaro, and Fumio Narita. "Dual Lie algebras of Heisenberg Poisson Lie groups." Tsukuba Journal of Mathematics 17, no. 2 (December 1993): 429–41. http://dx.doi.org/10.21099/tkbjm/1496162270.
Full textHilgert, Joachim, and Karl H. Hofmann. "Semigroups in Lie groups, semialgebras in Lie algebras." Transactions of the American Mathematical Society 288, no. 2 (February 1, 1985): 481. http://dx.doi.org/10.1090/s0002-9947-1985-0776389-7.
Full textBerenstein, Arkady, and Vladimir Retakh. "Lie algebras and Lie groups over noncommutative rings." Advances in Mathematics 218, no. 6 (August 2008): 1723–58. http://dx.doi.org/10.1016/j.aim.2008.03.003.
Full textHOFMANN, K. H., and K. H. NEEB. "Pro-Lie groups which are infinite-dimensional Lie groups." Mathematical Proceedings of the Cambridge Philosophical Society 146, no. 2 (March 2009): 351–78. http://dx.doi.org/10.1017/s030500410800128x.
Full textFigueroa-O’Farrill, José. "Lie algebraic Carroll/Galilei duality." Journal of Mathematical Physics 64, no. 1 (January 1, 2023): 013503. http://dx.doi.org/10.1063/5.0132661.
Full textNahlus, Nazih. "Lie Algebras of Pro-Affine Algebraic Groups." Canadian Journal of Mathematics 54, no. 3 (June 1, 2002): 595–607. http://dx.doi.org/10.4153/cjm-2002-021-9.
Full textNoohi, Behrang. "Integrating morphisms of Lie 2-algebras." Compositio Mathematica 149, no. 2 (February 2013): 264–94. http://dx.doi.org/10.1112/s0010437x1200067x.
Full textLauret, Jorge. "Degenerations of Lie algebras and geometry of Lie groups." Differential Geometry and its Applications 18, no. 2 (March 2003): 177–94. http://dx.doi.org/10.1016/s0926-2245(02)00146-8.
Full textDissertations / Theses on the topic "Lie groups and Lie algebras"
Eddy, Scott M. "Lie Groups and Lie Algebras." Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1320152161.
Full textBurroughs, Nigel John. "The quantisation of Lie groups and Lie algebras." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358486.
Full textKrook, Jonathan. "Overview of Lie Groups and Their Lie Algebras." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275722.
Full textLiegrupper kan ses som grupper som även är glatta. Målet med den här rapporten är att definiera Liegrupper som glatta mångfalder, och att undersöka några av liegruppernas egenskaper. Till varje Liegrupp kan man relatera ett vektorrum, som kallas Liegruppens Liealgebra. Vi kommer undersöka vilka egenskaper hos en Liegrupp som kan härledas från dess Liealgebra. Som tillämpning kommer vi karaktärisera alla unitära irreducibla ändligtdimensionella representationer av Liegruppen SO(3).
Ammar, Gregory, Christian Mehl, and Volker Mehrmann. "Schur-Like Forms for Matrix Lie Groups, Lie Algebras and Jordan Algebras." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501032.
Full textSantacruz, Camilo Andres Angulo. "A cohomology theory for Lie 2-algebras and Lie 2-groups." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-084657/.
Full textNesta tese, nós introduzimos uma nova teoria de cohomologia associada às 2-álgebras de Lie e uma nova teoria de cohomologia associada aos 2-grupos de Lie. Prova-se que estas teorias de cohomologia estendem as teorias de cohomologia clássicas de álgebras de Lie e grupos de Lie em que os seus segundos grupos classificam extensões. Finalmente, usaremos estos fatos junto com um morfismo de van Est adaptado para encontrar uma nova prova da integrabilidade das 2-álgebras de Lie.
Günther, Janne-Kathrin. "The C*-algebras of certain Lie groups." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0118/document.
Full textIn this doctoral thesis, the C*-algebras of the connected real two-step nilpotent Lie groups and the Lie group SL(2,R) are characterized. Furthermore, as a preparation for an analysis of its C*-algebra, the topology of the spectrum of the semidirect product U(n) x H_n is described, where H_n denotes the Heisenberg Lie group and U(n) the unitary group acting by automorphisms on H_n. For the determination of the group C*-algebras, the operator valued Fourier transform is used in order to map the respective C*-algebra into the algebra of all bounded operator fields over its spectrum. One has to find the conditions that are satisfied by the image of this C*-algebra under the Fourier transform and the aim is to characterize it through these conditions. In the present thesis, it is proved that both the C*-algebras of the connected real two-step nilpotent Lie groups and the C*-algebra of SL(2,R) fulfill the same conditions, namely the “norm controlled dual limit” conditions. Thereby, these C*-algebras are described in this work and the “norm controlled dual limit” conditions are explicitly computed in both cases. The methods used for the two-step nilpotent Lie groups and the group SL(2,R) are completely different from each other. For the two-step nilpotent Lie groups, one regards their coadjoint orbits and uses the Kirillov theory, while for the group SL(2,R) one can accomplish the calculations more directly
Günther, Janne-Kathrin. "The C*-algebras of certain Lie groups." Electronic Thesis or Diss., Université de Lorraine, 2016. http://www.theses.fr/2016LORR0118.
Full textIn this doctoral thesis, the C*-algebras of the connected real two-step nilpotent Lie groups and the Lie group SL(2,R) are characterized. Furthermore, as a preparation for an analysis of its C*-algebra, the topology of the spectrum of the semidirect product U(n) x H_n is described, where H_n denotes the Heisenberg Lie group and U(n) the unitary group acting by automorphisms on H_n. For the determination of the group C*-algebras, the operator valued Fourier transform is used in order to map the respective C*-algebra into the algebra of all bounded operator fields over its spectrum. One has to find the conditions that are satisfied by the image of this C*-algebra under the Fourier transform and the aim is to characterize it through these conditions. In the present thesis, it is proved that both the C*-algebras of the connected real two-step nilpotent Lie groups and the C*-algebra of SL(2,R) fulfill the same conditions, namely the “norm controlled dual limit” conditions. Thereby, these C*-algebras are described in this work and the “norm controlled dual limit” conditions are explicitly computed in both cases. The methods used for the two-step nilpotent Lie groups and the group SL(2,R) are completely different from each other. For the two-step nilpotent Lie groups, one regards their coadjoint orbits and uses the Kirillov theory, while for the group SL(2,R) one can accomplish the calculations more directly
Wickramasekara, Sujeewa, and sujeewa@physics utexas edu. "On the Representations of Lie Groups and Lie Algebras in Rigged Hilbert." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi994.ps.
Full textJakovljevic, Cvjetan, and University of Lethbridge Faculty of Arts and Science. "Conformal field theory and lie algebras." Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 1996, 1996. http://hdl.handle.net/10133/37.
Full textiv, 80 leaves : ill. ; 28 cm.
Ray, Jishnu. "Iwasawa algebras for p-adic Lie groups and Galois groups." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS189/document.
Full textA key tool in p-adic representation theory is the Iwasawa algebra, originally constructed by Iwasawa in 1960's to study the class groups of number fields. Since then, it appeared in varied settings such as Lazard's work on p-adic Lie groups and Fontaine's work on local Galois representations. For a prime p, the Iwasawa algebra of a p-adic Lie group G, is a non-commutative completed group algebra of G which is also the algebra of p-adic measures on G. It is a general principle that objects coming from semi-simple, simply connected (split) groups have explicit presentations like Serre's presentation of semi-simple algebras and Steinberg's presentation of Chevalley groups as noticed by Clozel. In Part I, we lay the foundation by giving an explicit description of certain Iwasawa algebras. We first find an explicit presentation (by generators and relations) of the Iwasawa algebra for the principal congruence subgroup of any semi-simple, simply connected Chevalley group over Z_p. Furthermore, we extend the method to give a set of generators and relations for the Iwasawa algebra of the pro-p Iwahori subgroup of GL(n,Z_p). The base change map between the Iwasawa algebras over an extension of Q_p motivates us to study the globally analytic p-adic representations following Emerton's work. We also provide results concerning the globally analytic induced principal series representation under the action of the pro-p Iwahori subgroup of GL(n,Z_p) and determine its condition of irreducibility. In Part II, we do numerical experiments using a computer algebra system SAGE which give heuristic support to Greenberg's p-rationality conjecture affirming the existence of "p-rational" number fields with Galois groups (Z/2Z)^t. The p-rational fields are algebraic number fields whose Galois cohomology is particularly simple and they offer ways of constructing Galois representations with big open images. We go beyond Greenberg's work and construct new Galois representations of the absolute Galois group of Q with big open images in reductive groups over Z_p (ex. GL(n, Z_p), SL(n, Z_p), SO(n, Z_p), Sp(2n, Z_p)). We are proving results which show the existence of p-adic Lie extensions of Q where the Galois group corresponds to a certain specific p-adic Lie algebra (ex. sl(n), so(n), sp(2n)). This relates our work with a more general and classical inverse Galois problem for p-adic Lie extensions
Books on the topic "Lie groups and Lie algebras"
Bourbaki, Nicolas. Lie Groups and Lie Algebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-89394-3.
Full textKomrakov, B. P., I. S. Krasil’shchik, G. L. Litvinov, and A. B. Sossinsky, eds. Lie Groups and Lie Algebras. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5258-7.
Full textSerre, Jean-Pierre. Lie Algebras and Lie Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-70634-2.
Full textOnishchik, A. L., and E. B. Vinberg, eds. Lie Groups and Lie Algebras III. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-03066-0.
Full textOnishchik, A. L., ed. Lie Groups and Lie Algebras I. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-57999-8.
Full textHall, Brian C. Lie Groups, Lie Algebras, and Representations. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13467-3.
Full textHall, Brian C. Lie Groups, Lie Algebras, and Representations. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21554-9.
Full textV, Gorbatsevich V., Onishchik A. L, and Onishchik A. L, eds. Lie groups and Lie algebras I. Berlin: Springer-Verlag, 1993.
Find full textBook chapters on the topic "Lie groups and Lie algebras"
Duistermaat, J. J., and J. A. C. Kolk. "Lie Groups and Lie Algebras." In Lie Groups, 1–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56936-4_1.
Full textSan Martin, Luiz A. B. "Lie Groups and Lie Algebras." In Lie Groups, 87–116. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61824-7_5.
Full textWoit, Peter. "Lie Algebras and Lie Algebra Representations." In Quantum Theory, Groups and Representations, 55–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64612-1_5.
Full textKosmann-Schwarzbach, Pr Yvette, and Stephanie Frank Singer. "Lie Groups and Lie Algebras." In Groups and Symmetries, 47–70. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-78866-1_4.
Full textKosmann-Schwarzbach, Yvette. "Lie Groups and Lie Algebras." In Groups and Symmetries, 59–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94360-8_4.
Full textIachello, Francesco. "Lie Groups." In Lie Algebras and Applications, 37–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44494-8_3.
Full textJeevanjee, Nadir. "Groups, Lie Groups, and Lie Algebras." In An Introduction to Tensors and Group Theory for Physicists, 109–86. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14794-9_4.
Full textJeevanjee, Nadir. "Groups, Lie Groups, and Lie Algebras." In An Introduction to Tensors and Group Theory for Physicists, 87–143. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-4715-5_4.
Full textIachello, Francesco. "Lie Algebras and Lie Groups." In Lie Algebras and Applications, 53–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44494-8_4.
Full textConlon, Lawrence. "Lie Groups and Lie Algebras." In Differentiable Manifolds, 127–57. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4757-2284-0_5.
Full textConference papers on the topic "Lie groups and Lie algebras"
Galaviz, Imelda. "Introductory Lectures on Lie Groups and Lie Algebras." In ADVANCED SUMMER SCHOOL IN PHYSICS 2005: Frontiers in Contemporary Physics EAV05. AIP, 2006. http://dx.doi.org/10.1063/1.2160969.
Full textKawazoe, T., T. Oshima, and S. Sano. "Representation Theory of Lie Groups and Lie Algebras." In Fuji-Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814537162.
Full textAkter, Sharmin, Md Monirul Islam, Md Rokunojjaman, and Salma Nasrin. "Operations of Lie Groups and Lie Algebras on Manifolds." In 2021 International Conference on Science & Contemporary Technologies (ICSCT). IEEE, 2021. http://dx.doi.org/10.1109/icsct53883.2021.9642569.
Full textGomez, X., and S. Majid. "Relating quantum and braided Lie algebras." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-6.
Full textKac, Victory G. "INFINITE DIMENSIONAL LIE ALGEBRAS AND GROUPS." In Proceedings of the Infinite Dimensional Lie Algebras and Groups. WORLD SCIENTIFIC, 1989. http://dx.doi.org/10.1142/9789812798343.
Full textCrouch, P., and F. Leita. "On the generation of classical Lie groups and Lie algebras." In 26th IEEE Conference on Decision and Control. IEEE, 1987. http://dx.doi.org/10.1109/cdc.1987.272869.
Full textRos, German, Julio Guerrero, Angel D. Sappa, Daniel Ponsa, and Antonio M. Lopez. "VSLAM pose initialization via Lie groups and Lie algebras optimization." In 2013 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2013. http://dx.doi.org/10.1109/icra.2013.6631402.
Full textHeyer, Herbert, and Jean Marion. "Analysis on Infinite-Dimensional Lie Groups and Algebras." In International Colloquium Marseille 1997. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814528528.
Full textKumar, Harshat, Alejandro Parada-Mayorga, and Alejandro Ribeiro. "Algebraic Convolutional Filters on Lie Group Algebras." In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023. http://dx.doi.org/10.1109/icassp49357.2023.10095164.
Full textChoi, Seul Hee, Xueqing Chen, and Ki-Bong Nam. "Automorphism Groups of Some Stable Lie Algebras with Exponential Functions I." In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0008.
Full textReports on the topic "Lie groups and Lie algebras"
Slawianowski, Jan J., Vasyl Kovalchuk, Agnieszka Martens, and Barbara Golubowska. Quasiclassical and Quantum Systems of Angular Momentum. Part II. Quantum Mehanics on Lie Groups and Meyhods of Group Algebras. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-22-2011-67-94.
Full textVilasi, Gaetano. Nambu Dynamics, n-Lie Algebras and Integrability. GIQ, 2012. http://dx.doi.org/10.7546/giq-10-2009-265-278.
Full textVilasi, Gaetano. Nambu Dynamics, n-Lie Algebras and Integrability. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-16-2009-77-91.
Full textArvanitoyeorgos, Andreas. Lie Transformation Groups and Geometry. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-11-35.
Full textYanovski, Alexander. Compatible Poisson Tensors Related to Bundles of Lie Algebras. GIQ, 2012. http://dx.doi.org/10.7546/giq-7-2006-307-319.
Full textAxford, R. A. Construction of Difference Equations Using Lie Groups. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/1172.
Full textGilmore, Robert. Relations Among Low-dimensional Simple Lie Groups. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-28-2012-1-45.
Full textClubok, Kenneth Sherman. Conformal field theory on affine Lie groups. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/260974.
Full textKrishnaprasad, P. S., and Dimitris P. Tsakiris. G-Snakes: Nonholonomic Kinematic Chains on Lie Groups. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada453004.
Full textCohen, Frederick R., Mentor Stafa, and V. Reiner. On Spaces of Commuting Elements in Lie Groups. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada606720.
Full text