Dissertations / Theses on the topic 'Lie groups and Lie algebras'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Lie groups and Lie algebras.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Eddy, Scott M. "Lie Groups and Lie Algebras." Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1320152161.
Full textBurroughs, Nigel John. "The quantisation of Lie groups and Lie algebras." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358486.
Full textKrook, Jonathan. "Overview of Lie Groups and Their Lie Algebras." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275722.
Full textLiegrupper kan ses som grupper som även är glatta. Målet med den här rapporten är att definiera Liegrupper som glatta mångfalder, och att undersöka några av liegruppernas egenskaper. Till varje Liegrupp kan man relatera ett vektorrum, som kallas Liegruppens Liealgebra. Vi kommer undersöka vilka egenskaper hos en Liegrupp som kan härledas från dess Liealgebra. Som tillämpning kommer vi karaktärisera alla unitära irreducibla ändligtdimensionella representationer av Liegruppen SO(3).
Ammar, Gregory, Christian Mehl, and Volker Mehrmann. "Schur-Like Forms for Matrix Lie Groups, Lie Algebras and Jordan Algebras." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501032.
Full textSantacruz, Camilo Andres Angulo. "A cohomology theory for Lie 2-algebras and Lie 2-groups." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-084657/.
Full textNesta tese, nós introduzimos uma nova teoria de cohomologia associada às 2-álgebras de Lie e uma nova teoria de cohomologia associada aos 2-grupos de Lie. Prova-se que estas teorias de cohomologia estendem as teorias de cohomologia clássicas de álgebras de Lie e grupos de Lie em que os seus segundos grupos classificam extensões. Finalmente, usaremos estos fatos junto com um morfismo de van Est adaptado para encontrar uma nova prova da integrabilidade das 2-álgebras de Lie.
Günther, Janne-Kathrin. "The C*-algebras of certain Lie groups." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0118/document.
Full textIn this doctoral thesis, the C*-algebras of the connected real two-step nilpotent Lie groups and the Lie group SL(2,R) are characterized. Furthermore, as a preparation for an analysis of its C*-algebra, the topology of the spectrum of the semidirect product U(n) x H_n is described, where H_n denotes the Heisenberg Lie group and U(n) the unitary group acting by automorphisms on H_n. For the determination of the group C*-algebras, the operator valued Fourier transform is used in order to map the respective C*-algebra into the algebra of all bounded operator fields over its spectrum. One has to find the conditions that are satisfied by the image of this C*-algebra under the Fourier transform and the aim is to characterize it through these conditions. In the present thesis, it is proved that both the C*-algebras of the connected real two-step nilpotent Lie groups and the C*-algebra of SL(2,R) fulfill the same conditions, namely the “norm controlled dual limit” conditions. Thereby, these C*-algebras are described in this work and the “norm controlled dual limit” conditions are explicitly computed in both cases. The methods used for the two-step nilpotent Lie groups and the group SL(2,R) are completely different from each other. For the two-step nilpotent Lie groups, one regards their coadjoint orbits and uses the Kirillov theory, while for the group SL(2,R) one can accomplish the calculations more directly
Günther, Janne-Kathrin. "The C*-algebras of certain Lie groups." Electronic Thesis or Diss., Université de Lorraine, 2016. http://www.theses.fr/2016LORR0118.
Full textIn this doctoral thesis, the C*-algebras of the connected real two-step nilpotent Lie groups and the Lie group SL(2,R) are characterized. Furthermore, as a preparation for an analysis of its C*-algebra, the topology of the spectrum of the semidirect product U(n) x H_n is described, where H_n denotes the Heisenberg Lie group and U(n) the unitary group acting by automorphisms on H_n. For the determination of the group C*-algebras, the operator valued Fourier transform is used in order to map the respective C*-algebra into the algebra of all bounded operator fields over its spectrum. One has to find the conditions that are satisfied by the image of this C*-algebra under the Fourier transform and the aim is to characterize it through these conditions. In the present thesis, it is proved that both the C*-algebras of the connected real two-step nilpotent Lie groups and the C*-algebra of SL(2,R) fulfill the same conditions, namely the “norm controlled dual limit” conditions. Thereby, these C*-algebras are described in this work and the “norm controlled dual limit” conditions are explicitly computed in both cases. The methods used for the two-step nilpotent Lie groups and the group SL(2,R) are completely different from each other. For the two-step nilpotent Lie groups, one regards their coadjoint orbits and uses the Kirillov theory, while for the group SL(2,R) one can accomplish the calculations more directly
Wickramasekara, Sujeewa, and sujeewa@physics utexas edu. "On the Representations of Lie Groups and Lie Algebras in Rigged Hilbert." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi994.ps.
Full textJakovljevic, Cvjetan, and University of Lethbridge Faculty of Arts and Science. "Conformal field theory and lie algebras." Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 1996, 1996. http://hdl.handle.net/10133/37.
Full textiv, 80 leaves : ill. ; 28 cm.
Ray, Jishnu. "Iwasawa algebras for p-adic Lie groups and Galois groups." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS189/document.
Full textA key tool in p-adic representation theory is the Iwasawa algebra, originally constructed by Iwasawa in 1960's to study the class groups of number fields. Since then, it appeared in varied settings such as Lazard's work on p-adic Lie groups and Fontaine's work on local Galois representations. For a prime p, the Iwasawa algebra of a p-adic Lie group G, is a non-commutative completed group algebra of G which is also the algebra of p-adic measures on G. It is a general principle that objects coming from semi-simple, simply connected (split) groups have explicit presentations like Serre's presentation of semi-simple algebras and Steinberg's presentation of Chevalley groups as noticed by Clozel. In Part I, we lay the foundation by giving an explicit description of certain Iwasawa algebras. We first find an explicit presentation (by generators and relations) of the Iwasawa algebra for the principal congruence subgroup of any semi-simple, simply connected Chevalley group over Z_p. Furthermore, we extend the method to give a set of generators and relations for the Iwasawa algebra of the pro-p Iwahori subgroup of GL(n,Z_p). The base change map between the Iwasawa algebras over an extension of Q_p motivates us to study the globally analytic p-adic representations following Emerton's work. We also provide results concerning the globally analytic induced principal series representation under the action of the pro-p Iwahori subgroup of GL(n,Z_p) and determine its condition of irreducibility. In Part II, we do numerical experiments using a computer algebra system SAGE which give heuristic support to Greenberg's p-rationality conjecture affirming the existence of "p-rational" number fields with Galois groups (Z/2Z)^t. The p-rational fields are algebraic number fields whose Galois cohomology is particularly simple and they offer ways of constructing Galois representations with big open images. We go beyond Greenberg's work and construct new Galois representations of the absolute Galois group of Q with big open images in reductive groups over Z_p (ex. GL(n, Z_p), SL(n, Z_p), SO(n, Z_p), Sp(2n, Z_p)). We are proving results which show the existence of p-adic Lie extensions of Q where the Galois group corresponds to a certain specific p-adic Lie algebra (ex. sl(n), so(n), sp(2n)). This relates our work with a more general and classical inverse Galois problem for p-adic Lie extensions
Stefanicki, Tomasz. "On subalgebras of free Lie algebras and on the Lie algebra associated to the lower central series of a group." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63885.
Full textGroves, Daniel. "Problems in Lie rings and groups." Thesis, University of Oxford, 2000. http://ora.ox.ac.uk/objects/uuid:4b5479ad-30ac-4ad6-98a3-51484095868b.
Full textSemple, James Fraser. "Completion of restricted Lie algebras and collapsing groups." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316874.
Full textSanders, Paul Jonathon. "Prime-power Lie algebras and finite p-groups." Thesis, University of Warwick, 1994. http://wrap.warwick.ac.uk/107557/.
Full textMartini, Alessio. "Algebras of differential operators on Lie groups and spectral multipliers." Doctoral thesis, Scuola Normale Superiore, 2010. http://hdl.handle.net/11384/85663.
Full textLampetti, Enrico. "Nilpotent orbits in semisimple Lie algebras." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23595/.
Full textSnopçe, Ilir. "Lie methods in pro-p groups." Diss., Online access via UMI:, 2009.
Find full textYu, Jun. "Symmetric subgroups of automorphism groups of compact simple Lie algebras /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MATH%202009%20YU.
Full textAndo, Hiroshi. "Polish Groups of Finite Type and Their Lie Algebras." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157737.
Full textAzam, Saeid. "Extended affine Lie algebras and extended affine Weyl groups." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ27440.pdf.
Full textKing, Jeremy David. "Finite presentability of Lie algebras and pro-p groups." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364385.
Full textWelsh, Trevor Alan. "Young tableaux and modules of groups of Lie algebras." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332783.
Full textGouthier, Daniele. "LCR-structures and LCR-algebras." Doctoral thesis, SISSA, 1996. http://hdl.handle.net/20.500.11767/4388.
Full textOkeke, Nnamdi, and University of Lethbridge Faculty of Arts and Science. "Character generators and graphs for simple lie algebras." Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2006, 2006. http://hdl.handle.net/10133/532.
Full textvii, 92 leaves ; 29 cm.
Wood, Lisa M. "ON THE SOLVABLE LENGTH OF ASSOCIATIVE ALGEBRAS, MATRIX GROUPS, AND LIE ALGEBRAS." NCSU, 2004. http://www.lib.ncsu.edu/theses/available/etd-10272004-164622/.
Full textGiroux, Yves. "Degenerate enveloping algebras of low-rank groups." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74026.
Full textHindeleh, Firas Y. "Tangent and Cotangent Bundles, Automorphism Groups and Representations of Lie Groups." University of Toledo / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1153933389.
Full textLacerda, Conrado Damato de 1986. "Grupos de Lie compactos." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305808.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-18T06:52:41Z (GMT). No. of bitstreams: 1 Lacerda_ConradoDamatode_M.pdf: 1208692 bytes, checksum: 167da419a80e3fe06963795a1b3fea2d (MD5) Previous issue date: 2011
Resumo: Neste trabalho apresentamos os principais resultados da teoria dos grupos de Lie compactos e provamos o Teorema de Weyl sobre os seus grupos fundamentais
Abstract: In this work we present the main results about compact Lie groups and prove Weyl's Theorem on their fundamental groups
Mestrado
Teoria de Lie
Mestre em Matemática
Graner, Nicholas. "Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7232.
Full textpl, tomasz@uci agh edu. "A Lie Group Structure on Strict Groups." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1076.ps.
Full textAssmann, Björn. "Applications of Lie methods to computations with polycyclic groups." Thesis, St Andrews, 2007. http://hdl.handle.net/10023/435.
Full textChopp, Mikaël. "Lie-admissible structures on Witt type algebras and automorphic algebras." Electronic Thesis or Diss., Metz, 2011. http://www.theses.fr/2011METZ020S.
Full textThe Witt algebra has been intensively studied and arise in many research fields in Mathematics. We are interested in two generalizations of the Witt algebra: the Witt type algebras and the Krichever-Novikov algebras. In a first part we study the problem of finding Lie-admissible structures on Witt type algebras. We give all third-power associative Lie-admissible structures and flexible Lie-admissible structures on these algebras. Moreover we study the symplectic forms which induce a graded left-symmetric product. In the second part of the thesis we study the automorphic algebras. Starting from arbitrary compact Riemann surfaces we consider the action of finite subgroups of the automorphism group of the surface on certain geometrically defined Lie algebras as the Krichever-Novikov type algebras. More precisely, we relate for G a finite subgroup of automorphism acting on the Riemann surface, the invariance subalgebras living on the surface to the algebras on the quotient surface under the group action. The almost-graded Krichever-Novikov algebras structure on the quotient gives in this way a subalgebra of a certain Krichever-Novikov algebra (with almost-grading) on the original Riemann surface
Chopp, Mikaël. "Lie-admissible structures on Witt type algebras and automorphic algebras." Thesis, Metz, 2011. http://www.theses.fr/2011METZ020S/document.
Full textThe Witt algebra has been intensively studied and arise in many research fields in Mathematics. We are interested in two generalizations of the Witt algebra: the Witt type algebras and the Krichever-Novikov algebras. In a first part we study the problem of finding Lie-admissible structures on Witt type algebras. We give all third-power associative Lie-admissible structures and flexible Lie-admissible structures on these algebras. Moreover we study the symplectic forms which induce a graded left-symmetric product. In the second part of the thesis we study the automorphic algebras. Starting from arbitrary compact Riemann surfaces we consider the action of finite subgroups of the automorphism group of the surface on certain geometrically defined Lie algebras as the Krichever-Novikov type algebras. More precisely, we relate for G a finite subgroup of automorphism acting on the Riemann surface, the invariance subalgebras living on the surface to the algebras on the quotient surface under the group action. The almost-graded Krichever-Novikov algebras structure on the quotient gives in this way a subalgebra of a certain Krichever-Novikov algebra (with almost-grading) on the original Riemann surface
Rivezzi, Andrea. "Lie bialgebras and Etingof-Kazhdan quantization." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21784/.
Full textXanthopoulos, Stilianos. "On a question of Verma about indecomposable representations of algebraic groups and of their lie algebras." Thesis, Queen Mary, University of London, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413244.
Full textCaprace, Pierre-Emmanuel. ""Abstract" homomorphisms of split Kac-Moody groups." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210962.
Full textLe problème d'isomorphismes qu'on étudie s'avère être un cas particulier d'un problème plus général, qui consiste à caractériser les homomorphismes de groupes algébriques vers les groupes de Kac-Moody, dont l'image est bornée. Ce problème peut à son tour s'énoncer comme un problème de rigidité pour les actions de groupes algébriques sur les immeubles, via l'action naturelle d'un groupe de Kac-Moody sur une paire d'immeubles jumelés. Les résultats partiels, relatifs à ce problème de rigidité, que nous obtenons, nous permettent d'apporter une solution complète au problème d'isomorphismes pour les groupes de Kac-Moody déployés.
En particulier, on obtient un résultat de dévissage pour les automorphismes de ces objets. Celui-ci fournit à son tour une description complète de la structure du groupe d'automorphismes d'un groupe de Kac-Moody déployé sur un corps de caractéristique~$0$.
Nos arguments permettent également de traiter de façon analogue certaines formes anisotropes de groupes de Kac-Moody complexes, appelées formes unitaires. On montre en particulier que la topologie Hausdorff naturelle que portent ces formes est un invariant de leur structure de groupe abstrait. Ceci généralise un résultat bien connu de H. Freudenthal pour les groupes de Lie compacts.
Enfin, l'on s'intéresse aux homomorphismes de groupes de Kac-Moody à image fini-dimensionnelle, et l'on démontre la non-existence de tels homomorphismes à noyau central, lorsque le domaine est un groupe de Kac-Moody de type indéfini sur un corps infini. Ceci réduit un problème ouvert, dit problème de linéarité pour les groupes de Kac-Moody, au cas de corps de base finis.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Bernhardt, Karen 1977. "The generalized Harish-Chandra homomorphism for Hecke algebras of real reductive Lie groups." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/28922.
Full textIncludes bibliographical references (p. 73-74).
For complex reductive Lie algebras g, the classical Harish-Chandra homomorphism allows to link irreducible finite dimensional representations of g to those of certain subalgebras l. The Casselman-Osborne theorem establishes an extension of this link to infinite dimensional irreducible representations. In this paper we present a generalized Harish-Chandra homomorphism construction for Hecke algebras, and establish the corresponding generalized Casselman-Osborne theorem. This homomorphism can be used to link representations of (g, L n K)-pairs to those of (g, L n K)-pairs, where is a certain subalgebra of g as in the classical case. Since representations of such pairs are closely related to those of the underlying Lie group G, this construction is a good first approximation to lifting the Harish-Chandra homomorphism from the Lie algebra to the Lie group level.
by Karen Bernhardt.
S.M.
Wahlström, Josefin. "An Introduction to Kleinian Geometry via Lie Groups." Thesis, Uppsala universitet, Algebra och geometri, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-422749.
Full textNg, Ka-chun, and 吳嘉俊. "Total positivity in some classical groups." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40987838.
Full textKa-chun, Ng. "Total positivity in some classical groups." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40987838.
Full textLin, Qian Ph D. Massachusetts Institute of Technology. "Modules over affine lie algebras at critical level and quantum groups by Qian Lin." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/60195.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 45-47).
There are two algebras associated to a reductive Lie algebra g: the De Concini- Kac quantum algebra and the Kac-Moody Lie algebra. Recent results show that the principle block of De Concini -Kac quantum algebra at an odd root of unity with (some) fixed central character is equivalent to the core of a certain t-structure on the derived category of coherent sheaves on certain Springer Fiber. Meanwhile, a certain category of representation of Kac-Moody Lie algebra at critical level with (some) fixed central character is also equivalent to a core of certain t-structure on the same triangulated category. Based on several geometric results developed by Bezurkvanikov et al. these two abelian categories turn out to be equivalent. i.e. the two t-structures coincide.
Ph.D.
Nishiyama, Kyo. "Representations of Weyl groups and their Hecke algebras on virtual character modules of a semisimple Lie group." 京都大学 (Kyoto University), 1986. http://hdl.handle.net/2433/86366.
Full textFaccin, Paolo. "Computational problems in algebra: units in group rings and subalgebras of real simple Lie algebras." Doctoral thesis, Università degli studi di Trento, 2014. https://hdl.handle.net/11572/368142.
Full textFaccin, Paolo. "Computational problems in algebra: units in group rings and subalgebras of real simple Lie algebras." Doctoral thesis, University of Trento, 2014. http://eprints-phd.biblio.unitn.it/1182/1/PhdThesisFaccinPaolo.pdf.
Full textSigurdsson, Gunnar. "Canoniical involutions and bosonic representations of three-dimensional lie colour algebras." Licentiate thesis, KTH, Physics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1750.
Full textWickramasekara, Sujeewa, and sujeewa@physics utexas edu. "Symmetry Representations in the Rigged Hilbert Space Formulation of." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi993.ps.
Full textZwicknagl, Sebastian. "Equivariant Poisson algebras and their deformations /." view abstract or download file of text, 2006. http://proquest.umi.com/pqdweb?did=1280144671&sid=2&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Full textTypescript. Includes vita and abstract. "In this dissertation I investigate Poisson structures on symmetric and exterior algebras of modules over complex reductive Lie algebras. I use the results to study the braided symmetric and exterior algebras"--P. 1. Includes bibliographical references (leaves 150-152). Also available for download via the World Wide Web; free to University of Oregon users.
Meyer, Philippe. "Représentations associées à des graduations d'algèbres de Lie et d'algèbres de Lie colorées." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD001/document.
Full textLet k be a field of characteristic not 2 or 3. Colour Lie algebras generalise both Lie algebras and Lie superalgebras. In this thesis we study representations V of colour Lie algebras g arising from colour Lie algebras structures on the vector space g⨁V. Firstly, we study the general structure of simple three-dimensional Lie algebras over k. Then, we classify up to isomorphism finite-dimensional Lie superalgebras whose even part is a simple three-dimensional Lie algebra. Next, to an abelian group ᴦ and a commutation factor ɛ of ᴦ, we develop the multilinear algebra associated to ᴦ-graded vector spaces. In this context, colour Lie algebras play the rôle of Lie algebras. This language allows us to state and prove a theorem reconstructing an ɛ-quadratic colour Lie algebra g⨁V from an ɛ-orthogonal representation V of an ɛ-quadratic colour Lie algebra g. This theorem involves an invariant taking its values in the ɛ-exterior algebra of V and generalises results of Kostant and Chen-Kang. We then introduce the notion of a special ɛ-orthogonal representation V of an ɛ-quadratic colour Lie algebra g and show that it allows us to define an ɛ-quadratic colour Lie algebra structure on the vector space g⨁sl(2,k)⨁V⨂k². Finally we give examples of special ɛ-orthogonal representations and in particular examples of special orthogonal representations of Lie algebras amongst which are: a one-parameter family of representations of sl(2,k)xsl(2,k) ; the 7-dimensional fundamental representation of a Lie algebra of type G₂ ; the 8-dimensional spinor representation of a Lie algebra of type so(7)
Severi, Claudio. "Clifford algebras and spin groups, with physical applications." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18387/.
Full textAthapattu, Mudiyanselage Chathurika Umayangani Manike Athapattu. "Chevalley Groups." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/1986.
Full text