To see the other types of publications on this topic, follow the link: Lie groups.

Journal articles on the topic 'Lie groups'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lie groups.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hiraga, Kaoru. "Lie groups." Duke Mathematical Journal 85, no. 1 (1996): 167–81. http://dx.doi.org/10.1215/s0012-7094-96-08507-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alekseevskii, D. V. "Lie groups." Journal of Soviet Mathematics 28, no. 6 (1985): 924–49. http://dx.doi.org/10.1007/bf02105458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ni, Xiang, and Chengming Bai. "Special symplectic Lie groups and hypersymplectic Lie groups." manuscripta mathematica 133, no. 3-4 (2010): 373–408. http://dx.doi.org/10.1007/s00229-010-0375-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

HOFMANN, K. H., and K. H. NEEB. "Pro-Lie groups which are infinite-dimensional Lie groups." Mathematical Proceedings of the Cambridge Philosophical Society 146, no. 2 (2009): 351–78. http://dx.doi.org/10.1017/s030500410800128x.

Full text
Abstract:
AbstractA pro-Lie group is a projective limit of a family of finite-dimensional Lie groups. In this paper we show that a pro-Lie group G is a Lie group in the sense that its topology is compatible with a smooth manifold structure for which the group operations are smooth if and only if G is locally contractible. We also characterize the corresponding pro-Lie algebras in various ways. Furthermore, we characterize those pro-Lie groups which are locally exponential, that is, they are Lie groups with a smooth exponential function which maps a zero neighbourhood in the Lie algebra diffeomorphically
APA, Harvard, Vancouver, ISO, and other styles
5

Wüstner, Michael. "Splittable Lie Groups and Lie Algebras." Journal of Algebra 226, no. 1 (2000): 202–15. http://dx.doi.org/10.1006/jabr.1999.8162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fioresi, Rita, and Robert Yuncken. "Quantized semisimple Lie groups." Archivum Mathematicum, no. 5 (2024): 311–49. https://doi.org/10.5817/am2024-5-311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hofmann, Karl H., Sidney A. Morris, and Markus Stroppel. "Locally compact groups, residual Lie groups, and varieties generated by Lie groups." Topology and its Applications 71, no. 1 (1996): 63–91. http://dx.doi.org/10.1016/0166-8641(95)00068-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Howard, Eric. "Theory of groups and symmetries: Finite groups, Lie groups and Lie algebras." Contemporary Physics 60, no. 3 (2019): 275. http://dx.doi.org/10.1080/00107514.2019.1663933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oğuz, Gülay, Ilhan Içen, and Gürsoy Habil. "Lie rough groups." Filomat 32, no. 16 (2018): 5735–41. http://dx.doi.org/10.2298/fil1816735o.

Full text
Abstract:
This paper introduces the definition of a Lie rough group as a natural development of the concepts of a smooth manifold and a rough group on an approximation space. Furthermore, the properties of Lie rough groups are discussed. It is shown that every Lie rough group is a topological rough group, and that the product of two Lie rough groups is again a Lie rough group. We define the concepts of Lie rough subgroups and Lie rough normal subgroups. Finally, our aim is to give an example by using definition of Lie rough homomorphism sets G and H.
APA, Harvard, Vancouver, ISO, and other styles
10

Pressley, Andrew N. "LIE GROUPS AND ALGEBRAIC GROUPS." Bulletin of the London Mathematical Society 23, no. 6 (1991): 612–14. http://dx.doi.org/10.1112/blms/23.6.612b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wojtyński, Wojciech. "Lie groups as quotient groups." Reports on Mathematical Physics 40, no. 2 (1997): 373–79. http://dx.doi.org/10.1016/s0034-4877(97)85935-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Doran, C., D. Hestenes, F. Sommen, and N. Van Acker. "Lie groups as spin groups." Journal of Mathematical Physics 34, no. 8 (1993): 3642–69. http://dx.doi.org/10.1063/1.530050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Moller, Jesper M. "Homotopy Lie Groups." Bulletin of the American Mathematical Society 32, no. 4 (1995): 413–29. http://dx.doi.org/10.1090/s0273-0979-1995-00613-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bagley, R. W., T. S. Wu, and J. S. Yang. "Pro-Lie groups." Transactions of the American Mathematical Society 287, no. 2 (1985): 829. http://dx.doi.org/10.1090/s0002-9947-1985-0768744-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

MARQUIS, T., and K.-H. NEEB. "HALF-LIE GROUPS." Transformation Groups 23, no. 3 (2018): 801–40. http://dx.doi.org/10.1007/s00031-018-9485-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li-Bland, David, and Eckhard Meinrenken. "Dirac Lie groups." Asian Journal of Mathematics 18, no. 5 (2014): 779–816. http://dx.doi.org/10.4310/ajm.2014.v18.n5.a2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Virg�s, Enrique Macias. "Non-closed Lie subgroups of Lie groups." Annals of Global Analysis and Geometry 11, no. 1 (1993): 35–40. http://dx.doi.org/10.1007/bf00773362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Alioune, Brahim, Mohamed Boucetta, and Ahmed Sid’Ahmed Lessiad. "On Riemann-Poisson Lie groups." Archivum Mathematicum, no. 4 (2020): 225–47. http://dx.doi.org/10.5817/am2020-4-225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bucki, Andrew. "Para-f-Lie groups." International Journal of Mathematics and Mathematical Sciences 2003, no. 49 (2003): 3149–52. http://dx.doi.org/10.1155/s0161171203211273.

Full text
Abstract:
Special para-f-structures on Lie groups are studied. It is shown that every para-f-Lie groupGis the quotient of the product of an almost product Lie group and a Lie group with trivial para-f-structure by a discrete subgroup.
APA, Harvard, Vancouver, ISO, and other styles
20

SATOH, TAKAO. "On the basis-conjugating automorphism groups of free groups and free metabelian groups." Mathematical Proceedings of the Cambridge Philosophical Society 158, no. 1 (2014): 83–109. http://dx.doi.org/10.1017/s0305004114000619.

Full text
Abstract:
AbstractIn this paper we study the images of the Johnson homomorphisms of the basis-conjugating automorphism groups of free groups and free metabelian groups. In particular, we show that the Johnson image is contained in a certain proper Lie subalgebra $\mathfrak{p}$Mn of the derivation algebra of the Chen Lie algebra. Furthermore, we completely determine the Johnson images, and give the abelianisation of $\mathfrak{p}$Mn as a Lie algebra by using Morita's trace maps.
APA, Harvard, Vancouver, ISO, and other styles
21

Lord, Nick, and N. Bourbaki. "Lie Groups and Lie Algebras (Chapters 1-3)." Mathematical Gazette 74, no. 468 (1990): 199. http://dx.doi.org/10.2307/3619408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mikami, Kentaro, and Fumio Narita. "Dual Lie algebras of Heisenberg Poisson Lie groups." Tsukuba Journal of Mathematics 17, no. 2 (1993): 429–41. http://dx.doi.org/10.21099/tkbjm/1496162270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chi, Kieu Phuong, Nguyen Huu Quang, and Bui Cao Van. "The Lie derivative of currents on Lie groups." Lobachevskii Journal of Mathematics 33, no. 1 (2012): 10–21. http://dx.doi.org/10.1134/s1995080212010027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hilgert, Joachim, and Karl H. Hofmann. "Semigroups in Lie groups, semialgebras in Lie algebras." Transactions of the American Mathematical Society 288, no. 2 (1985): 481. http://dx.doi.org/10.1090/s0002-9947-1985-0776389-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ginzburg, Viktor L., and Alan Weinstein. "Lie-Poisson structure on some Poisson Lie groups." Journal of the American Mathematical Society 5, no. 2 (1992): 445. http://dx.doi.org/10.1090/s0894-0347-1992-1126117-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ruppert, Wolfgang A. F., and Brigitte E. Breckner. "On Lie semigroup analogues of parabolic Lie groups." Semigroup Forum 77, no. 1 (2008): 86–100. http://dx.doi.org/10.1007/s00233-008-9067-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Cohen, Arjeh M., and Robert L. Griess. "Non-Local Lie Primitive Subgroups of Lie Groups." Canadian Journal of Mathematics 45, no. 1 (1993): 88–103. http://dx.doi.org/10.4153/cjm-1993-005-7.

Full text
Abstract:
AbstractBorovik found a Lie primitive subgroup of E8(ℂ) isomorphic to (Alt5 × Sym6) : 2. In this note, we provide a short proof of existence and his result that the conjugacy class of this subgroup is the only one among those of non-local Lie primitive subgroups of finite dimensional simple complex Lie groups having a socle with more than one simple factor.
APA, Harvard, Vancouver, ISO, and other styles
28

Berenstein, Arkady, and Vladimir Retakh. "Lie algebras and Lie groups over noncommutative rings." Advances in Mathematics 218, no. 6 (2008): 1723–58. http://dx.doi.org/10.1016/j.aim.2008.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hanusch, Maximilian. "Regularity of Lie groups." Communications in Analysis and Geometry 30, no. 1 (2022): 53–152. http://dx.doi.org/10.4310/cag.2022.v30.n1.a2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hasić, Amor. "Representations of Lie Groups." Advances in Linear Algebra & Matrix Theory 11, no. 04 (2021): 117–34. http://dx.doi.org/10.4236/alamt.2021.114009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Marthinsen, Arne. "Interpolation in Lie Groups." SIAM Journal on Numerical Analysis 37, no. 1 (1999): 269–85. http://dx.doi.org/10.1137/s0036142998338861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Landsberg, J. M., and L. Manivel. "Series of Lie groups." Michigan Mathematical Journal 52, no. 2 (2004): 453–79. http://dx.doi.org/10.1307/mmj/1091112085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Matumoto, Hisayosi. "split semisimple Lie groups." Duke Mathematical Journal 53, no. 3 (1986): 635–76. http://dx.doi.org/10.1215/s0012-7094-86-05335-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Stembridge, John R. "in complex Lie groups." Duke Mathematical Journal 73, no. 2 (1994): 469–90. http://dx.doi.org/10.1215/s0012-7094-94-07320-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Goetze, Edward R., and Ralf J. Spatzier. "of semisimple Lie groups." Duke Mathematical Journal 88, no. 1 (1997): 1–27. http://dx.doi.org/10.1215/s0012-7094-97-08801-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Calvaruso, Giovanni, and Marco Castrillón López. "Cyclic Lorentzian Lie groups." Geometriae Dedicata 181, no. 1 (2015): 119–36. http://dx.doi.org/10.1007/s10711-015-0116-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Golubchik, I. Z., and A. I. Murseeva. "Homomorphisms of Lie Groups." Journal of Mathematical Sciences 233, no. 5 (2018): 659–65. http://dx.doi.org/10.1007/s10958-018-3953-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Varopoulos, N. Th. "Analysis on Lie groups." Journal of Functional Analysis 76, no. 2 (1988): 346–410. http://dx.doi.org/10.1016/0022-1236(88)90041-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Trzetrzelewski, Maciej. "Supersymmetry and Lie groups." Journal of Mathematical Physics 48, no. 8 (2007): 083508. http://dx.doi.org/10.1063/1.2771418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gadea, P. M., J. C. González-Dávila, and J. A. Oubiña. "Cyclic metric Lie groups." Monatshefte für Mathematik 176, no. 2 (2014): 219–39. http://dx.doi.org/10.1007/s00605-014-0692-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Conti, Diego, and Federico A. Rossi. "Einstein nilpotent Lie groups." Journal of Pure and Applied Algebra 223, no. 3 (2019): 976–97. http://dx.doi.org/10.1016/j.jpaa.2018.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Varopoulos, N. TH. "Diffusion on Lie Groups." Canadian Journal of Mathematics 46, no. 2 (1994): 438–48. http://dx.doi.org/10.4153/cjm-1994-023-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Yanjun, and Wolfgang Willems. "Lie-type-like groups." Journal of Algebra 447 (February 2016): 432–44. http://dx.doi.org/10.1016/j.jalgebra.2015.08.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Maier, Stephan. "Conformally flat Lie groups." Mathematische Zeitschrift 228, no. 1 (1998): 155–75. http://dx.doi.org/10.1007/pl00004600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Neeb, Karl-Hermann. "Weakly Exponential Lie Groups." Journal of Algebra 179, no. 2 (1996): 331–61. http://dx.doi.org/10.1006/jabr.1996.0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Glöckner, Helge. "Lie Groups of Measurable Mappings." Canadian Journal of Mathematics 55, no. 5 (2003): 969–99. http://dx.doi.org/10.4153/cjm-2003-039-9.

Full text
Abstract:
AbstractWe describe new construction principles for infinite-dimensional Lie groups. In particular, given any measure space (X; Σ, μ) and (possibly infinite-dimensional) Lie group G, we construct a Lie group L∞(X; G), which is a Fréchet-Lie group if G is so. We also show that the weak direct product of an arbitrary family (Gi)i∈I of Lie groups can be made a Lie group, modelled on the locally convex direct sum .
APA, Harvard, Vancouver, ISO, and other styles
47

Dobrev, V. K. "Invariant Differential Operators for Non-Compact Lie Groups: Euclidean Jordan Groups or Conformal Lie Groups." Journal of Physics: Conference Series 411 (January 28, 2013): 012012. http://dx.doi.org/10.1088/1742-6596/411/1/012012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Campagnolo, Caterina, and Holger Kammeyer. "Products of free groups in Lie groups." Journal of Algebra 579 (August 2021): 237–55. http://dx.doi.org/10.1016/j.jalgebra.2021.03.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kachi, Hideyuki, and Mamoru Mimura. "Homotopy groups of compact exceptional Lie groups." Proceedings of the Japan Academy, Series A, Mathematical Sciences 75, no. 4 (1999): 47–49. http://dx.doi.org/10.3792/pjaa.75.47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Stachura, Piotr. "From double Lie groups to quantum groups." Fundamenta Mathematicae 188 (2005): 195–240. http://dx.doi.org/10.4064/fm188-0-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!