Academic literature on the topic 'Lie quadratic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lie quadratic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lie quadratic"
Ardizzoni, Alessandro, and Fabio Stumbo. "Quadratic Lie Algebras." Communications in Algebra 39, no. 8 (August 2011): 2723–51. http://dx.doi.org/10.1080/00927872.2010.489917.
Full textAlbuquerque, Helena, Elisabete Barreiro, and Saïd Benayadi. "Odd-quadratic Lie superalgebras." Journal of Geometry and Physics 60, no. 2 (February 2010): 230–50. http://dx.doi.org/10.1016/j.geomphys.2009.09.013.
Full textZhu, Linsheng. "Solvable quadratic Lie algebras." Science in China Series A 49, no. 4 (March 26, 2006): 477–93. http://dx.doi.org/10.1007/s11425-006-0477-y.
Full textDuong, Minh Thanh, and Rosane Ushirobira. "Singular quadratic Lie superalgebras." Journal of Algebra 407 (June 2014): 372–412. http://dx.doi.org/10.1016/j.jalgebra.2014.02.034.
Full textAYADI, IMEN, HEDI BENAMOR, and SAÏD BENAYADI. "LIE SUPERALGEBRAS WITH SOME HOMOGENEOUS STRUCTURES." Journal of Algebra and Its Applications 11, no. 05 (September 26, 2012): 1250095. http://dx.doi.org/10.1142/s0219498812500958.
Full textBarreiro, Elisabete, and Saïd Benayadi. "Quadratic symplectic Lie superalgebras and Lie bi-superalgebras." Journal of Algebra 321, no. 2 (January 2009): 582–608. http://dx.doi.org/10.1016/j.jalgebra.2008.09.026.
Full textWang, Song, and Linsheng Zhu. "Non-degenerate Invariant Bilinear Forms on Lie Color Algebras." Algebra Colloquium 17, no. 03 (September 2010): 365–74. http://dx.doi.org/10.1142/s1005386710000362.
Full textBaklouti, Amir. "Quadratic Hom-Lie triple systems." Journal of Geometry and Physics 121 (November 2017): 166–75. http://dx.doi.org/10.1016/j.geomphys.2017.06.013.
Full textKotov, Alexei, and Thomas Strobl. "Integration of quadratic Lie algebroids to Riemannian Cartan–Lie groupoids." Letters in Mathematical Physics 108, no. 3 (January 12, 2018): 737–56. http://dx.doi.org/10.1007/s11005-018-1048-1.
Full textJurdjevic, Velimir. "Affine-quadratic problems on Lie groups." Mathematical Control & Related Fields 3, no. 3 (2013): 347–74. http://dx.doi.org/10.3934/mcrf.2013.3.347.
Full textDissertations / Theses on the topic "Lie quadratic"
Duong, Minh-Thanh. "A new invariant of quadratic lie algebras and quadratic lie superalgebras." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00673991.
Full textDuong, Minh thanh. "A new invariant of quadratic lie algebras and quadratic lie superalgebras." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS021/document.
Full textIn this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7
Baker, Audrey. "An algorithm for the strong freeness of quadratic lie polynomials /." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100761.
Full textHidri, Samiha. "Formes bilinéaires invariantes sur les algèbres de Leibniz et les systèmes triples de Lie (resp. Jordan)." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0237/document.
Full textIn this thesis, we study the stucture of several types of algebras endowed with Symmetric, non degenerate and invariant bilinear forms. In the first part, we study quadratic Leibniz algebras. First, we prove that these algebras are symmetric. Then, we use the T*-extension and the double extension to prove some properties of this type of Leibniz algebras. Besides, since we observe that the skew-symmetry of the Leibniz bracket gives rise to other types of invariance for a bilinear form on a Leibniz algebra: The left invariance and the right invariance. We focus on the study of left (resp. right) Leibniz algebras with symmetric, non degenerate and left (resp. right) invariant bilinear form. In particular, we prove that these algebras are Lie admissibles. The second part of this work is dedicated to the study of quadratic Lie triple systems and pseudo-euclidien Jordan triple systems. We start by giving an inductive description of quadratic Lie triple systems using double extension. Next, we introduce the T*-extension of Jordan triple systems. Finally, we give new caracterizations of semi-simple Jordan triple systems among pseudo-euclidian Jordan triple systems
Sheriff, Jamin Lebbe. "The Convexity of Quadratic Maps and the Controllability of Coupled Systems." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11019.
Full textEngineering and Applied Sciences
Gorodnyk, Oleksandr. "Density and equidistribution of integer points." Connect to this title online, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1054487714.
Full textTitle from first page of PDF file. Document formatted into pages; contains xi, 231 p.; also includes graphics Includes bibliographical references (p. 224-229). Available online via OhioLINK's ETD Center
Tempesta, Patricia. "Simmetries in binary differential equations." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/.
Full textO objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.
Popiel, Tomasz. "Geometrically-defined curves in Riemannian manifolds." University of Western Australia. School of Mathematics and Statistics, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0119.
Full textFeneuil, Joseph. "Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces de Besov." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM040/document.
Full textThis thesis is devoted to results in real harmonic analysis in discrete (graphs) or continuous (Lie groups) geometric contexts.Let $\Gamma$ be a graph (a set of vertices and edges) equipped with a discrete laplacian $\Delta=I-P$, where $P$ is a Markov operator.Under suitable geometric assumptions on $\Gamma$, we show the $L^p$ boundedness of fractional Littlewood-Paley functionals. We introduce $H^1$ Hardy spaces of functions and of $1$-differential forms on $\Gamma$, giving several characterizations of these spaces, only assuming the doubling property for the volumes of balls in $\Gamma$. As a consequence, we derive the $H^1$ boundedness of the Riesz transform. Assuming furthermore pointwise upper bounds for the kernel (Gaussian of subgaussian upper bounds) on the iterates of the kernel of $P$, we also establish the $L^p$ boundedness of the Riesz transform for $10$, $1\leq p\leq+\infty$ and $1\leq q\leq +\infty$.These results hold for polynomial as well as for exponential volume growth of balls
Araújo, Leonardo Rodrigues de. "Congruências quadráticas, reciprocidade e aplicações em sala de aula." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7480.
Full textApproved for entry into archive by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-19T17:19:18Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 977282 bytes, checksum: 98d2394b44f8e76ed8a9986250386a2c (MD5)
Made available in DSpace on 2015-05-19T17:19:18Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 977282 bytes, checksum: 98d2394b44f8e76ed8a9986250386a2c (MD5) Previous issue date: 2013-08-13
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this study, we evaluate if the congruence x2 a (mod m), where m is prime and (a;m) = 1, has or not solutions, highlighting the importance of Quadratic Residues and consequently the cooperation of the Legendre's Symbol, the Euler's Criterion and the Gauss' Lemma. Also, we demonstrate the Law of Quadratic Reciprocity generalizing situations for composite numbers, that is, the Jacobi's Symbol and its properties. We present some proposals of activities for the High School involving the subject matter and its possible applications, through an understandable language for students of this level.
Neste estudo, vamos avaliar se a congruência x2 a (mod m), onde m é primo e (a;m) = 1, apresenta ou não solução, destacando a importância dos Resíduos Quadráticos e, consequentemente da cooperação do Símbolo de Legendre, do Critério de Euler e do Lema de Gauss. Também, demonstraremos a Lei de Reciprocidade Quadrática generalizando situações para números compostos, ou seja, o Símbolo de Jacobi e suas propriedades. Apresentamos algumas propostas de atividades para o Ensino Médio envolvendo o assunto abordado e suas possíveis aplicações, através de uma linguagem compreensível aos alunos deste nível de ensino.
Books on the topic "Lie quadratic"
Strade, Helmut, Thomas Weigel, Marina Avitabile, and Jörg Feldvoss. Lie algebras and related topics: Workshop in honor of Helmut Strade's 70th birthday : lie algebras, May 22-24, 2013, Università degli studi di Milano-Bicocca, Milano, Italy. Providence, Rhode Island: American Mathematical Society, 2015.
Find full text1932-, Bass Hyman, and Lam, T. Y. (Tsit-Yuen), 1942-, eds. Algebra. Providence, R.I: American Mathematical Society, 2010.
Find full textAlladi, Krishnaswami, Frank Garvan, and Ae Ja Yee. Ramanujan 125: International conference to commemorate the 125th anniversary of Ramanujan's birth, Ramanujan 125, November 5--7, 2012, University of Florida, Gainesville, Florida. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textCsárdás im Quadrat: Ungarische Avantgarde (1919-1930) und traditionelle Bauernkultur. Mainz: H. Schmidt, 1995.
Find full textBook chapters on the topic "Lie quadratic"
Ammar, Faouzi, Imen Ayadi, Sami Mabrouk, and Abdenacer Makhlouf. "Quadratic Color Hom-Lie Algebras." In Associative and Non-Associative Algebras and Applications, 287–312. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35256-1_16.
Full textDonin, J. "On The Quantization of Quadratic Poisson Brackets on a Polynomial Algebra of Four Variables." In Lie Groups and Lie Algebras, 17–25. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5258-7_2.
Full textBenayadi, Saïd. "Construction of Symplectic Quadratic Lie Algebras from Poisson Algebras." In Springer Proceedings in Mathematics & Statistics, 111–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55361-5_8.
Full textSeligman, George B. "Construction of exceptional algebras from quadratic forms." In Constructions of Lie Algebras and their Modules, 52–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0079300.
Full textSeligman, George B. "Representations of exceptional algebras constructed from quadratic forms." In Constructions of Lie Algebras and their Modules, 84–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0079301.
Full textBaklouti, Amir, and Samiha Hidri. "Inductive Description of Quadratic Lie and Pseudo-Euclidean Jordan Triple Systems." In Forum for Interdisciplinary Mathematics, 65–93. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8498-5_4.
Full textSomberg, Petr. "Deformations of Quadratic Algebras, the Joseph Ideal for Classical Lie Algebras, and Special Tensors." In Symmetries and Overdetermined Systems of Partial Differential Equations, 527–36. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-73831-4_28.
Full textBajja, Salwa, Khalifa Es-Sebaiy, and Lauri Viitasaari. "Limit Theorems for Quadratic Variations of the Lei–Nualart Process." In Stochastic Processes and Applications, 105–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02825-1_5.
Full textPollard, David. "Another Look at Differentiability in Quadratic Mean." In Festschrift for Lucien Le Cam, 305–14. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1880-7_19.
Full textGoswami, Kundan, Sonjoy Das, and Biswa Nath Datta. "Robust Control of Stochastic Structures Using Minimum Norm Quadratic Partial Eigenvalue Assignment Technique." In Mathematical and Statistical Applications in Life Sciences and Engineering, 43–69. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5370-2_2.
Full textConference papers on the topic "Lie quadratic"
Yanovski, Alexandar B., and Moses C. dos Santos. "Quadratic Casimir Invariants for “Universal” Lie Algebra Extensions." In INTERNATIONAL WORKSHOP ON COMPLEX STRUCTURES, INTEGRABILITY AND VECTOR FIELDS. AIP, 2011. http://dx.doi.org/10.1063/1.3567135.
Full textPesheck, E., and C. Pierre. "A Global Methodology for the Modal Reduction of Large Nonlinear Systems Containing Quadratic and Cubic Nonlinearities." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-3952.
Full textWu, Liheng, Andreas Müller, and Jian S. Dai. "Matrix Analysis of Second-Order Kinematic Constraints of Single-Loop Linkages in Screw Coordinates." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85433.
Full textWampler, Charles W. "Locating N Points of a Rigid Body on N Given Planes." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57182.
Full textMüller, Andreas, Zdravko Terze, and Viktor Pandza. "A Non-Redundant Formulation for the Dynamics Simulation of Multibody Systems in Terms of Unit Dual Quaternions." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60191.
Full textYuan, Chengzhi, Fen Wu, and Chang Duan. "Robust Gain-Scheduling Output Feedback Control of State-Delayed LFT Systems Using Dynamic IQCs." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9686.
Full textZinflou, Arnaud, Caroline Gagné, and Marc Gravel. "A hybrid genetic/immune strategy to tackle the multiobjective quadratic assignment problem." In European Conference on Artificial Life 2013. MIT Press, 2013. http://dx.doi.org/10.7551/978-0-262-31709-2-ch139.
Full textFUHRMAN, MARCO, YING HU, and GIANMARIO TESSITORE. "STOCHASTIC CONTROL AND BSDES WITH QUADRATIC GROWTH." In Control Theory and Related Topics - In Memory of Professor Xunjing Li. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812790552_0007.
Full textYayun Wan, Rachana Visaria, John C. Bischof, and Emad S. Ebbini. "Quadratic B-mode and pulse inversion imaging of perfusion defects in vivo." In 2007 IEEE/NIH Life Science Systems and Applications Workshop. IEEE, 2007. http://dx.doi.org/10.1109/lssa.2007.4400928.
Full textXU, YASHAN. "A LINEAR QUADRATIC CONSTRAINED OPTIMAL FEEDBACK CONTROL PROBLEM." In Control Theory and Related Topics - In Memory of Professor Xunjing Li. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812790552_0016.
Full text