Dissertations / Theses on the topic 'Lie quadratic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Lie quadratic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Duong, Minh-Thanh. "A new invariant of quadratic lie algebras and quadratic lie superalgebras." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00673991.
Full textDuong, Minh thanh. "A new invariant of quadratic lie algebras and quadratic lie superalgebras." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS021/document.
Full textIn this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7
Baker, Audrey. "An algorithm for the strong freeness of quadratic lie polynomials /." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100761.
Full textHidri, Samiha. "Formes bilinéaires invariantes sur les algèbres de Leibniz et les systèmes triples de Lie (resp. Jordan)." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0237/document.
Full textIn this thesis, we study the stucture of several types of algebras endowed with Symmetric, non degenerate and invariant bilinear forms. In the first part, we study quadratic Leibniz algebras. First, we prove that these algebras are symmetric. Then, we use the T*-extension and the double extension to prove some properties of this type of Leibniz algebras. Besides, since we observe that the skew-symmetry of the Leibniz bracket gives rise to other types of invariance for a bilinear form on a Leibniz algebra: The left invariance and the right invariance. We focus on the study of left (resp. right) Leibniz algebras with symmetric, non degenerate and left (resp. right) invariant bilinear form. In particular, we prove that these algebras are Lie admissibles. The second part of this work is dedicated to the study of quadratic Lie triple systems and pseudo-euclidien Jordan triple systems. We start by giving an inductive description of quadratic Lie triple systems using double extension. Next, we introduce the T*-extension of Jordan triple systems. Finally, we give new caracterizations of semi-simple Jordan triple systems among pseudo-euclidian Jordan triple systems
Sheriff, Jamin Lebbe. "The Convexity of Quadratic Maps and the Controllability of Coupled Systems." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11019.
Full textEngineering and Applied Sciences
Gorodnyk, Oleksandr. "Density and equidistribution of integer points." Connect to this title online, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1054487714.
Full textTitle from first page of PDF file. Document formatted into pages; contains xi, 231 p.; also includes graphics Includes bibliographical references (p. 224-229). Available online via OhioLINK's ETD Center
Tempesta, Patricia. "Simmetries in binary differential equations." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/.
Full textO objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.
Popiel, Tomasz. "Geometrically-defined curves in Riemannian manifolds." University of Western Australia. School of Mathematics and Statistics, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0119.
Full textFeneuil, Joseph. "Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces de Besov." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM040/document.
Full textThis thesis is devoted to results in real harmonic analysis in discrete (graphs) or continuous (Lie groups) geometric contexts.Let $\Gamma$ be a graph (a set of vertices and edges) equipped with a discrete laplacian $\Delta=I-P$, where $P$ is a Markov operator.Under suitable geometric assumptions on $\Gamma$, we show the $L^p$ boundedness of fractional Littlewood-Paley functionals. We introduce $H^1$ Hardy spaces of functions and of $1$-differential forms on $\Gamma$, giving several characterizations of these spaces, only assuming the doubling property for the volumes of balls in $\Gamma$. As a consequence, we derive the $H^1$ boundedness of the Riesz transform. Assuming furthermore pointwise upper bounds for the kernel (Gaussian of subgaussian upper bounds) on the iterates of the kernel of $P$, we also establish the $L^p$ boundedness of the Riesz transform for $10$, $1\leq p\leq+\infty$ and $1\leq q\leq +\infty$.These results hold for polynomial as well as for exponential volume growth of balls
Araújo, Leonardo Rodrigues de. "Congruências quadráticas, reciprocidade e aplicações em sala de aula." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7480.
Full textApproved for entry into archive by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-19T17:19:18Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 977282 bytes, checksum: 98d2394b44f8e76ed8a9986250386a2c (MD5)
Made available in DSpace on 2015-05-19T17:19:18Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 977282 bytes, checksum: 98d2394b44f8e76ed8a9986250386a2c (MD5) Previous issue date: 2013-08-13
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this study, we evaluate if the congruence x2 a (mod m), where m is prime and (a;m) = 1, has or not solutions, highlighting the importance of Quadratic Residues and consequently the cooperation of the Legendre's Symbol, the Euler's Criterion and the Gauss' Lemma. Also, we demonstrate the Law of Quadratic Reciprocity generalizing situations for composite numbers, that is, the Jacobi's Symbol and its properties. We present some proposals of activities for the High School involving the subject matter and its possible applications, through an understandable language for students of this level.
Neste estudo, vamos avaliar se a congruência x2 a (mod m), onde m é primo e (a;m) = 1, apresenta ou não solução, destacando a importância dos Resíduos Quadráticos e, consequentemente da cooperação do Símbolo de Legendre, do Critério de Euler e do Lema de Gauss. Também, demonstraremos a Lei de Reciprocidade Quadrática generalizando situações para números compostos, ou seja, o Símbolo de Jacobi e suas propriedades. Apresentamos algumas propostas de atividades para o Ensino Médio envolvendo o assunto abordado e suas possíveis aplicações, através de uma linguagem compreensível aos alunos deste nível de ensino.
Benyacoub, Slim. "Ecologie de l'avifaune forestière nicheuse de la région d'El-Kala (Nord-Est algérien)." Phd thesis, Université de Bourgogne, 1993. http://tel.archives-ouvertes.fr/tel-00720020.
Full textSucic, Victor. "Parameters Selection for Optimising Time-Frequency Distributions and Measurements of Time-Frequency Characteristics of Nonstationary Signals." Queensland University of Technology, 2004. http://eprints.qut.edu.au/15834/.
Full textCarvalho, Maria Elisabete Félix Barreiro. "Quadratic Lie superalgebras and some problems on Lie bi-superalgebras." Doctoral thesis, 2007. http://hdl.handle.net/10316/7516.
Full textSquires, Travis. "Lie 2-algebras as Homotopy Algebras Over a Quadratic Operad." Thesis, 2011. http://hdl.handle.net/1807/31946.
Full textMarques, André Codeço. "Rolamentos sem deslize nem torção em variedades pseudo-riemannianas." Doctoral thesis, 2015. http://hdl.handle.net/10316/26528.
Full textO objetivo fundamental desta dissertação é apresentar uma visão abrangente sobre rolamentos, sem deslize nem torção, de variedades diferenciáveis, contribuindo para aprofundar o conhecimento teórico nesta área e evidenciar potenciais aplicações. Começamos por apresentar uma definição de aplicação rolamento para o caso mais geral em que o movimento acontece dentro de espaços ambiente que são variedades pseudo-Riemannianas. Isto generaliza a definição clássica de Sharpe. A seguir, provamos algumas propriedades essenciais dos rolamentos e fazemos a ligação destes com o transporte paralelo de vetores. Dentro do contexto geral, analisamos os rolamentos das hiperquádricas de espaços pseudo-Euclidianos, com enfoque no caso dos espaços pseudo-hiperbólicos H_k^n (r). Apresentamos as equações da cinemáticas do rolamento de H_k^n (r) sobre o espaço afim associado ao espaço tangente num ponto. A obtenção de soluções explícitas destas equações é alcançada em dois casos particulares, destacando-se a situação em que o rolamento é feito ao longo de geodésicas. Rolamentos de um espaço pseudo-hiperbólico sobre outro e de pseudoesferas são igualmente tratados. Investigamos os rolamentos de grupos de Lie quadráticos sobre um espaço afim tangente. Também nestes casos se deduzem as equações da cinemática e se procuram soluções explícitas. A abordagem usada neste caso tem a preocupação de não destruir a estrutura matricial que caracteriza os elementos destes grupos matriciais. Estudamos a controlabilidade de rolamentos nos casos da hiperquádrica H_k^n (r) e dos grupos de Lie quadráticos principais, os grupos pseudo-ortogonais e os grupos simpléticos. Seguimos uma abordagem algébrica que passa por reescrever as equações da cinemática como um sistema de controlo afim a evoluir num grupo de Lie. Aplicamos os resultados obtidos anteriormente na resolução de problemas de interpolação suave em variedades e apresentamos um algoritmo interpolador. As propriedades dos rolamentos permitem transformar um problema de interpolação complicado, formulado numa variedade, num outro mais simples de resolver. São ainda fornecidos os ingredientes necessários para a implementação prática do algoritmo nos casos particulares de H_0^n (r) e H_1^n (r).
The primary goal of this dissertation is to present a comprehensive overview about rolling motions, subject to non-slip and non-twist constraints, of differentiable manifolds, contributing to deepen the theoretical knowledge in this area and to point out potential applications. We first present a definition of rolling map for the situation when the motion occurs inside an ambient space which is a pseudo-Riemannian manifold. This generalizes the classical definition of Sharpe. We then present several essential properties of rolling and make the connection between rolling motions and parallel transport of vectors. Within this general framework, we analyze the rolling of hyperquadrics embedded in pseudo-Euclidean spaces, focusing on the case of pseudo-hyperbolic spaces H_k^n (r). The kinematic equations of rolling H_k^n (r) on the affine space associated to the tangent space at a point is presented. Explicit solutions of these equations are obtained in two particular cases, with emphasis when the rolling is done along geodesics. Rolling of a pseudo-hyperbolic space on another and rolling of pseudo-spheres are equally treated. We investigate the rolling of quadratic Lie groups on an affine space tangent. We also derive the corresponding kinematic equations and look for explicit solutions. The approach used here is chosen so that the matrix structure that characterizes the elements of these matrix groups is not destroyed. We also address the controllability issue of rolling motions in the cases of hyperquadrics H_k^n (r) and of the most important quadratic Lie groups, pseudo-orthogonal groups and symplectic groups. We used an algebraic approach to controllability that requires rewriting the kinematic equations as a control system evolving on a Lie group. We apply the results previously obtained to solve problems of smooth interpolation on manifolds and present an interpolating algorithm. The properties of rolling enable to transform a complicated interpolation problem, formulated on a manifold, on another much simpler to solve. Ingredients needed to implement the algorithm are provided in the specific cases of H_0^n (r) and H_1^n (r).