Academic literature on the topic 'Lie superalgebras'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lie superalgebras.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lie superalgebras"
Pouye, M., and B. Kpamegan. "Extensions, crossed modules and pseudo quadratic Lie type superalgebras." Extracta Mathematicae 37, no. 2 (December 1, 2022): 153–84. http://dx.doi.org/10.17398/2605-5686.37.2.153.
Full textAbramov, Viktor. "3-Lie Superalgebras Induced by Lie Superalgebras." Axioms 8, no. 1 (February 6, 2019): 21. http://dx.doi.org/10.3390/axioms8010021.
Full textSun, Liping, and Wende Liu. "Hom-Lie superalgebra structures on exceptional simple Lie superalgebras of vector fields." Open Mathematics 15, no. 1 (November 13, 2017): 1332–43. http://dx.doi.org/10.1515/math-2017-0112.
Full textChen, Liangyun, and Daoji Meng. "On the Intersection of Maximal Subalgebras in a Lie Superalgebra." Algebra Colloquium 16, no. 03 (September 2009): 503–16. http://dx.doi.org/10.1142/s1005386709000479.
Full textPEI, YUFENG, and CHENGMING BAI. "BALINSKY–NOVIKOV SUPERALGEBRAS AND SOME INFINITE-DIMENSIONAL LIE SUPERALGEBRAS." Journal of Algebra and Its Applications 11, no. 06 (November 14, 2012): 1250119. http://dx.doi.org/10.1142/s0219498812501198.
Full textElduque, Alberto. "A note on semiprime Malcev superalgebras." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 123, no. 5 (1993): 887–91. http://dx.doi.org/10.1017/s0308210500029553.
Full textSun, Liping, Wende Liu, Xiaocheng Gao, and Boying Wu. "Restricted Envelopes of Lie Superalgebras." Algebra Colloquium 22, no. 02 (April 15, 2015): 309–20. http://dx.doi.org/10.1142/s1005386715000279.
Full textGuan, Baoling, Xinxin Tian, and Lijun Tian. "Induced 3-Hom-Lie superalgebras." Electronic Research Archive 31, no. 8 (2023): 4637–51. http://dx.doi.org/10.3934/era.2023237.
Full textHuang, Zhongxian. "Conformal Super-Biderivations on Lie Conformal Superalgebras." Journal of Mathematics 2021 (June 2, 2021): 1–9. http://dx.doi.org/10.1155/2021/6624315.
Full textYuan, He, and Liangyun Chen. "Lie n superderivations and generalized Lie n superderivations of superalgebras." Open Mathematics 16, no. 1 (March 13, 2018): 196–209. http://dx.doi.org/10.1515/math-2018-0018.
Full textDissertations / Theses on the topic "Lie superalgebras"
Bagnoli, Lucia. "Z-graded Lie superalgebras." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14118/.
Full textFurutsu, Hirotoshi. "Representations of Lie Superalgebras, II." 京都大学 (Kyoto University), 1991. http://hdl.handle.net/2433/168802.
Full textKyoto University (京都大学)
0048
新制・課程博士
理学博士
甲第4695号
理博第1293号
新制||理||720(附属図書館)
UT51-91-E66
京都大学大学院理学研究科数学専攻
(主査)教授 平井 武, 教授 池部 晃生, 教授 岩崎 敷久
学位規則第5条第1項該当
Palmieri, Riccardo. "Real forms of Lie algebras and Lie superalgebras." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9448/.
Full textFrisk, Anders. "On Stratified Algebras and Lie Superalgebras." Doctoral thesis, Uppsala : Department of Mathematics, Uppsala university, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7781.
Full textDuong, Minh-Thanh. "A new invariant of quadratic lie algebras and quadratic lie superalgebras." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00673991.
Full textDuong, Minh thanh. "A new invariant of quadratic lie algebras and quadratic lie superalgebras." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS021/document.
Full textIn this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7
Ma, Shuk-Chuen. "Conformal and Lie superalgebras related to the differential operators on the circle /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MATH%202003%20MA.
Full textIncludes bibliographical references (leaves 148-150). Also available in electronic version. Access restricted to campus users.
Götz, Gerhard Markus. "Lie superalgebras and string theory in AdS3 x S3." Paris 6, 2006. http://www.theses.fr/2006PA066039.
Full textMcSween, Alexandra. "Affine Oriented Frobenius Brauer Categories and General Linear Lie Superalgebras." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42342.
Full textGardini, Matteo. "Representations of semisimple Lie algebras." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9029/.
Full textBooks on the topic "Lie superalgebras"
Gorelik, Maria, and Paolo Papi, eds. Advances in Lie Superalgebras. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02952-8.
Full text1964-, Zolotykh Andrej A., ed. Combinatorial aspects of Lie superalgebras. Boca Raton: CRC Press, 1995.
Find full textMisra, Kailash, Daniel Nakano, and Brian Parshall, eds. Lie Algebras, Lie Superalgebras, Vertex Algebras and Related Topics. Providence, Rhode Island: American Mathematical Society, 2016. http://dx.doi.org/10.1090/pspum/092.
Full textVyjayanthi, Chari, Penkov Ivan B. 1957-, and Block Richard E, eds. Modular interfaces: Modular Lie algebras, quantum groups, and Lie superalgebras. Providence, RI: American Mathematical Society, 1997.
Find full textEyre, Timothy M. W. Quantum Stochastic Calculus and Representations of Lie Superalgebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096850.
Full textJakobsen, Hans Plesner. The full set of unitarizable highest weight modules of basic classical Lie superalgebras. Providence, RI: American Mathematical Society, 1994.
Find full textE, Block Richard, Chari Vyjayanthi, Penkov Ivan B. 1957-, and American Mathematical Society, eds. Modular interfaces: Modular Lie algebras, quantum groups, and Lie superalgebras : a conference in honor of Richard E. Block, February 18-20, 1995, University of California, Riverside. Providence, R.I: American Mathematical Society, 1997.
Find full text1949-, Neher Erhard, ed. Locally finite root systems. Providence, R.I: American Mathematical Society, 2004.
Find full textNeher, Erhard. Geometric representation theory and extended affine Lie algebras. Providence, R.I: American Mathematical Society, 2011.
Find full textEtingof, P. I., Alistair Savage, and Mikhail Khovanov. Perspectives in representation theory: A conference in honor of Igor Frenkel's 60th birthday on perspectives in representation theory : May 12-17, 2012, Yale University, New Haven, CT. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textBook chapters on the topic "Lie superalgebras"
Berezin, Felix Alexandrovich. "Lie Superalgebras." In Introduction to Superanalysis, 170–228. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-1963-6_6.
Full textBerezin, Felix Alexandrovich. "Lie Superalgebras." In Introduction to Superanalysis, 231–44. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-1963-6_7.
Full textGorelik, Maria, and Dimitar Grantcharov. "Q-type Lie superalgebras." In Advances in Lie Superalgebras, 67–89. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02952-8_5.
Full textPenkov, Ivan, and Crystal Hoyt. "Finite-Dimensional Lie Superalgebras." In Springer Monographs in Mathematics, 11–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89660-7_2.
Full textSerganova, Vera. "Representations of Lie Superalgebras." In Perspectives in Lie Theory, 125–77. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58971-8_3.
Full textSerganova, Vera. "Classical Lie superalgebras at infinity." In Advances in Lie Superalgebras, 181–201. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02952-8_11.
Full textZhang, Ruibin. "Serre presentations of Lie superalgebras." In Advances in Lie Superalgebras, 235–80. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02952-8_14.
Full textPoletaeva, Elena. "On Kostant’s theorem for Lie superalgebras." In Advances in Lie Superalgebras, 167–79. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02952-8_10.
Full textMazorchuk, Volodymyr. "Parabolic category O for classical Lie superalgebras." In Advances in Lie Superalgebras, 149–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02952-8_9.
Full textKulish, P. P. "Quantum Lie Superalgebras and Supergroups." In Research Reports in Physics, 14–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-84000-5_2.
Full textConference papers on the topic "Lie superalgebras"
Chen, Wenjuan. "Intuitionistic Fuzzy Lie Sub-superalgebras and Ideals of Lie Superalgebras." In 2009 International Joint Conference on Computational Sciences and Optimization, CSO. IEEE, 2009. http://dx.doi.org/10.1109/cso.2009.399.
Full textKhuntia, T. K., R. N. Padhan, and K. C. Pati. "On generalizations of derivations of lie superalgebras." In RECENT TRENDS IN APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0137118.
Full textFATTORI, DAVIDE, VICTOR G. KAC, and ALEXANDER RETAKH. "STRUCTURE THEORY OF FINITE LIE CONFORMAL SUPERALGEBRAS." In Proceedings of the Fifth International Workshop. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702562_0002.
Full textMikhalev, Alexander A., and Andrej A. Zolotykh. "Algorithms for primitive elements of free Lie algebras and Lie superalgebras." In the 1996 international symposium. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/236869.236929.
Full textOkubo, Susumu. "Construction of Lie Superalgebras from Triple Product Systems." In HIGH ENERGY PHYSICS: The 25th Annual Montreal-Rochester-Syracuse-Toronto Conference on High Energy Physics MRST 2003: A Tribute to Joe Schechter. AIP, 2003. http://dx.doi.org/10.1063/1.1632172.
Full textTolstoy, V. N. "Multiparameter Quantum Deformations of Jordanian Type for Lie Superalgebras." In Proceedings of the 23rd International Conference of Differential Geometric Methods in Theoretical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772527_0041.
Full textNandi, N., R. N. Padhan, and K. C. Pati. "Isoclinism and factor set in regular Hom-Lie superalgebras." In RECENT TRENDS IN APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0137470.
Full textTOLSTOY, V. N. "HIDDEN PROPERTY OF EXTENDED JORDANIAN TWISTS FOR LIE SUPERALGEBRAS." In Proceedings of the XI Regional Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701862_0041.
Full textKanakoglou, K., C. Daskaloyannis, A. Herrera-Aguilar, H. A. Morales-Tecotl, L. A. Urena-Lopez, R. Linares-Romero, and H. H. Garcia-Compean. "Super-Hopf realizations of Lie superalgebras: Braided Paraparticle extensions of the Jordan-Schwinger map." In GRAVITATIONAL PHYSICS: TESTING GRAVITY FROM SUBMILLIMETER TO COSMIC: Proceedings of the VIII Mexican School on Gravitation and Mathematical Physics. AIP, 2010. http://dx.doi.org/10.1063/1.3473853.
Full textCatto, Sultan, and Vladimir Dobrev. "Effective Supersymmetry Based on SU(3)[sup c]×S Superalgebra." In LIE THEORY AND ITS APPLICATIONS IN PHYSICS: VIII International Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3460168.
Full text