Academic literature on the topic 'Lifting line models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lifting line models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lifting line models"
Bottasso, Carlo L., Stefano Cacciola, and Xabier Iriarte. "Calibration of wind turbine lifting line models from rotor loads." Journal of Wind Engineering and Industrial Aerodynamics 124 (January 2014): 29–45. http://dx.doi.org/10.1016/j.jweia.2013.11.003.
Full textEpps, Brenden. "On the Rotor Lifting Line Wake Model." Journal of Ship Production and Design 33, no. 01 (February 1, 2017): 31–45. http://dx.doi.org/10.5957/jspd.2017.33.1.31.
Full textDuque, Earl P. N., Michael D. Burklund, and Wayne Johnson. "Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment." Journal of Solar Energy Engineering 125, no. 4 (November 1, 2003): 457–67. http://dx.doi.org/10.1115/1.1624088.
Full textSugar-Gabor, O. "A general numerical unsteady non-linear lifting line model for engineering aerodynamics studies." Aeronautical Journal 122, no. 1254 (June 6, 2018): 1199–228. http://dx.doi.org/10.1017/aer.2018.57.
Full textYang, Wang, Ran Yang, Juanjuan Li, Lin Wei, and Jian Yang. "Optimized tuber-lifting velocity model for cassava harvester design." Advances in Mechanical Engineering 10, no. 9 (September 2018): 168781401880086. http://dx.doi.org/10.1177/1687814018800863.
Full textHwang, Jaejin, Gregory G. Knapik, Jonathan S. Dufour, and William S. Marras. "A Comparison of Performance Between Straight-Line Muscle and Curved Muscle Models." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 61, no. 1 (September 2017): 1339–40. http://dx.doi.org/10.1177/1541931213601817.
Full textMenéndez Arán, David H., and Spyros A. Kinnas. "On Fully Aligned Lifting Line Model for Propellers: An Assessment of Betz condition." Journal of Ship Research 58, no. 03 (September 1, 2014): 130–45. http://dx.doi.org/10.5957/jsr.2014.58.3.130.
Full textGur, O., and A. Rosen. "Comparison between blade-element models of propellers." Aeronautical Journal 112, no. 1138 (December 2008): 689–704. http://dx.doi.org/10.1017/s0001924000002669.
Full textSutrisno, Sutrisno, Deendarlianto Deendarlianto, Indarto Indarto, Sigit Iswahyudi, Muhammad Agung Bramantya, and Setyawan Bekti Wibowo. "Performances and Stall Delays of Three Dimensional Wind Turbine Blade Plate-Models with Helicopter-Like Propeller Blade Tips." Modern Applied Science 11, no. 10 (September 30, 2017): 189. http://dx.doi.org/10.5539/mas.v11n10p189.
Full textHwang, Jaejin, Gregory G. Knapik, Jonathan S. Dufour, and William S. Marras. "A Biologically-Assisted Curved Muscle Model of the Lumbar Spine." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 60, no. 1 (September 2016): 1119. http://dx.doi.org/10.1177/1541931213601262.
Full textDissertations / Theses on the topic "Lifting line models"
Neumann, Sönke [Verfasser], and Norbert [Akademischer Betreuer] Hoffmann. "Fluid-structure interaction of flexible lifting bodies with multi-body dynamics of order-reduced models and the actuator-line method / Sönke Neumann. Betreuer: Norbert Hoffmann." Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2016. http://d-nb.info/1091059357/34.
Full textMontgomery, Zachary S. "A Propeller Model Based on a Modern Numerical Lifting-Line Algorithm with an IterativeSemi-Free Wake Solver." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7001.
Full textCilliers, M. E. "Investigation of an aeroelastic model for a generic wing structure." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80317.
Full textENGLISH ABSTRACT: Computational Aeroelasticity is a complex research field which combines structural and aerodynamic analyses to describe a vehicle in flight. This thesis investigates the feasibility of including such an analysis in the development of control systems for unmanned aerial vehicles within the Electronic Systems Laboratory at the Department of Electrical and Electronic Engineering at Stellenbosch University. This is done through the development of a structural analysis algorithm using the Finite Element Method, an aerodynamic algorithm for Prandtl’s Lifting Line Theory and experimental work. The experimental work was conducted at the Low-Speed Wind Tunnel at the Department of Mechanical and Mechatronic Engineering. The structural algorithm was applied to 20-noded hexahedral elements in a winglike structure. The wing was modelled as a cantilever beam, with a fixed and a free end. Natural frequencies and deflections were verified with the experimental model and commercial software. The aerodynamic algorithm was applied to a Clark-Y airfoil with a chord of 0:1m and a half-span of 0:5m. This profile was also used on the experimental model. Experimental data was captured using single axis accelerometers. All postprocessing of data is also discussed in this thesis. Results show good correlation between the structural algorithm and experimental data.
AFRIKAANSE OPSOMMING: Numeriese Aeroelastisiteit is ’n komplekse navorsingsveld waar ’n vlieënde voertuig deur ’n strukturele en ’n aerodinamiese analise beskryf word. Hierdie tesis ondersoek die toepaslikheid van hierdie tipe analise in die ontwerp van beheerstelsels vir onbemande voertuie binne die ESL groep van die Departement Elektriese en Elektroniese Ingenieurswese by Stellenbosch Universiteit. Die ondersoek bevat die ontwikkeling van ’n strukturele algoritme met die gebruik van die Eindige Element Methode, ’n aerodinamiese algoritme vir Prandtl se Heflynteorie en eksperimentele werk. Die eksperimentele werk is by die Department Meganiese en Megatroniese Ingensierswese toegepas in die Lae-Spoed Windtonnel. Die strukturele algoritme maak gebruik van ’n 20-nodus heksahedrale element om ’n vlerk-tipe struktuur op te bou. Die vlerk is vereenvouding na ’n kantelbalk met ’n vasgeklemde en ’n vrye ent. Natuurlike frekwensies en defleksies is met die eksperimentele werk en kommersiële sagteware geverifieer. Die aerodinamiese algoritme is op ’n Clark-Y profiel met 0:1m koord lengte en ’n halwe vlerk length van 0:5m geïmplementeer. Die profiel is ook in die eksperimentele model gebruik. Die eksperimentele data is met eendimensionele versnellingsmeters opgeneem. Al die verdere berekeninge wat op ekperimentele data gedoen is, word in die tesis beskryf. Resultate toon goeie korrelasie tussen die strukturele algoritme en die eksperimentele data.
Fluck, Manuel. "Stochastic methods for unsteady aerodynamic analysis of wings and wind turbine blades." Thesis, 2017. http://hdl.handle.net/1828/7981.
Full textGraduate
0538
0548
mfluck@uvic.ca
Book chapters on the topic "Lifting line models"
Ghiselli, Andrea. "Conclusion." In Protecting China's Interests Overseas, 241–52. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198867395.003.0009.
Full textConference papers on the topic "Lifting line models"
Pelegrineli, Luis, Ricardo Afonso Angélico, and Felipe Liorbano. "Application of Galerkin method to the solution of aerodynamic models based on the lifting-line theory." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-2863.
Full textKinnas, Spyros A., Wei Xu, and Yi-Hsiang Yu. "Computational Models for Prediction of Performance and Design of Tidal Turbines." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20411.
Full textBaltazar, J., J. Machado, and J. A. C. Falca˜o de Campos. "Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines With Lifting Line and Panel Methods." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49377.
Full textBalduzzi, Francesco, Alessandro Bianchini, Giovanni Ferrara, David Marten, George Pechlivanoglou, Christian Navid Nayeri, Christian Oliver Paschereit, Jernej Drofelnik, Michele Sergio Campobasso, and Lorenzo Ferrari. "Three-Dimensional Aerodynamic Analysis of a Darrieus Wind Turbine Blade Using Computational Fluid Dynamics and Lifting Line Theory." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64701.
Full textMartín-San-Román, Raquel, José Azcona-Armendáriz, and Alvaro Cuerva-Tejero. "Lifting Line Free Wake Vortex Filament Method for the Evaluation of Floating Offshore Wind Turbines: First Step — Validation for Fixed Wind Turbines." In ASME 2019 2nd International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/iowtc2019-7540.
Full textMarten, David, Matthew Lennie, Georgios Pechlivanoglou, Christian Navid Nayeri, and Christian Oliver Paschereit. "Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43265.
Full textHalse, Karl H., Vilmar Æsøy, Dmitriy Ponkratov, Yingguang Chu, Jiafeng Xu, and Eilif Pedersen. "Lifting Operations for Subsea Installations Using Small Construction Vessels and Active Heave Compensation Systems: A Simulation Approach." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23297.
Full textDubosc, Matthieu, Nicolas Tantot, Philippe Beaumier, and Grégory Delattre. "A Method for Predicting Contra Rotating Propellers Off-Design Performance." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25057.
Full textBROUWER, H. "A lifting line model for propeller noise." In 12th Aeroacoustic Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1079.
Full textSalay, Rick, Michalis Famelis, Julia Rubin, Alessio Di Sandro, and Marsha Chechik. "Lifting model transformations to product lines." In ICSE '14: 36th International Conference on Software Engineering. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2568225.2568267.
Full text