Academic literature on the topic 'Ligand based virtual screening'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ligand based virtual screening.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ligand based virtual screening"
Kato, Koya, and George Chikenji. "1P266 Development of Ligand Based Virtual Screening considering protein-ligand interaction(22A. Bioinformatics: Structural genomics,Poster)." Seibutsu Butsuri 53, supplement1-2 (2013): S150. http://dx.doi.org/10.2142/biophys.53.s150_1.
Full textDouguet, Dominique. "Ligand-Based Approaches in Virtual Screening." Current Computer Aided-Drug Design 4, no. 3 (September 1, 2008): 180–90. http://dx.doi.org/10.2174/157340908785747456.
Full textStahura, Florence, and Jürgen Bajorath. "New Methodologies for Ligand-Based Virtual Screening." Current Pharmaceutical Design 11, no. 9 (April 1, 2005): 1189–202. http://dx.doi.org/10.2174/1381612053507549.
Full textAhmed, Ali, Naomie Salim, and Ammar Abdo. "Fragment Reweighting in Ligand-Based Virtual Screening." Advanced Science Letters 19, no. 9 (September 1, 2013): 2782–86. http://dx.doi.org/10.1166/asl.2013.5012.
Full textHIRAYAMA, Noriaki. "Virtual Screening Based on Protein-Ligand Interactions." YAKUGAKU ZASSHI 127, no. 1 (January 1, 2007): 101–2. http://dx.doi.org/10.1248/yakushi.127.101.
Full textJain, Ajay N. "Ligand-Based Structural Hypotheses for Virtual Screening." Journal of Medicinal Chemistry 47, no. 4 (February 2004): 947–61. http://dx.doi.org/10.1021/jm030520f.
Full textAbdo, Ammar, Beining Chen, Christoph Mueller, Naomie Salim, and Peter Willett. "Ligand-Based Virtual Screening Using Bayesian Networks." Journal of Chemical Information and Modeling 50, no. 6 (May 26, 2010): 1012–20. http://dx.doi.org/10.1021/ci100090p.
Full textDai, Weixing, and Dianjing Guo. "A Ligand-Based Virtual Screening Method Using Direct Quantification of Generalization Ability." Molecules 24, no. 13 (June 30, 2019): 2414. http://dx.doi.org/10.3390/molecules24132414.
Full textKato, Koya, and George Chikenji. "2P272 A Ligand Based Virtual Screening method that takes into account of protein-ligand interactions(22A. Bioinformatics:Structural genomics,Poster)." Seibutsu Butsuri 54, supplement1-2 (2014): S240. http://dx.doi.org/10.2142/biophys.54.s240_2.
Full textRayevsky, O. V., O. M. Demchyk, P. A. Karpov, S. P. Ozheredov, S. I. Spivak, A. I. Yemets, and Ya B. Blume. "Structure-based virtual screening for new lead compounds targeted Plasmodium α-tubulin." Faktori eksperimental'noi evolucii organizmiv 28 (August 31, 2021): 135–39. http://dx.doi.org/10.7124/feeo.v28.1389.
Full textDissertations / Theses on the topic "Ligand based virtual screening"
Shave, Steven R. "Development of high performance structure and ligand based virtual screening techniques." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4333.
Full textMazalan, Lucyantie. "Evaluation of similarity measures for ligand-based virtual screening." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/21422/.
Full textAlaasam, Mohammed. "Identification of novel monoamine oxidase B inhibitors from ligand based virtual screening." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1405439915.
Full textHeikamp, Kathrin [Verfasser]. "Application and Development of Computational Methods for Ligand-Based Virtual Screening / Kathrin Heikamp." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1052061036/34.
Full textGregori, Puigjané Elisabet. "A new Ligand-Based approach to virtual screening, and prolifing or large chemical libraries." Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7166.
Full textAquests descriptors han sigut usats amb èxit en nombroses aplicacions importants en el procés de descoberta de fàrmacs. Després de la implementació de noves tecnologies in vitro com ara el "high-throughput screening" i la química combinatòria, la capacitat de sintetitzar i assajar compostos va augmentar exponencialment però alhora la necessitat d'una selecció racional dels compostos va fer-se patent. La priorització dels compostos en termes de la predicció de la seva probabilitat de mostrar la activitat desitjada és per tant una de les primeres aplicacions del perfilat virtual basat en lligands usant els descriptors SHED.
En realitat, aquesta metodologia es pot estendre al punt de vista quimiogenòmic del procés de descoberta de fàrmacs, usant els descriptors per generar models basats en ligands de totes les proteïnes amb informació de lligands. Aquesta aproximació més ampla, el perfilat virtual de proteïnes, és un pas més per completar la matriu d'activitat entre tots els possibles compostos químics i totes les proteïnes rellevants. A més, una anàlisi més aprofundida d'aquesta matriu completa generada per mitjà del perfilat virtual de proteïnes pot dur-nos a una perspectiva de farmacologia en xarxa del procés de descoberta de fàrmacs. Aquesta direcció pot ser seguida afegint a aquesta informació de lligands i proteïnes la informació relativa a rutes de reaccions i anàlisi de sistemes, donant lloc a l'anomenada biologia química de sistemes que pot ajudar a entendre els processos biològics com un conjunt i a identificar de manera més racional noves i prometedores dianes terapèutiques.
The representation of molecules by means of molecular descriptors is the basis of most of the computational tools for drug design. These computational methods are based on the abstraction from the chemical structure to summarize its relevant features while being efficient in the comparison of large molecule libraries. A very important feature of these descriptors is their ability to capture the information relevant for the interaction with any target independently from the scaffold of the compound. This will allow detecting as similar any two compounds with the same features arranged in the same way around essentially different scaffolds, a property referred to as scaffold hopping. With this in mind, a new set of descriptors based on the distribution of atom-centred pharmacophoric feature pairs by means of the information theory concept of Shannon entropy [1], called SHED, have been developed.
These descriptors have been successfully used in a number of applications important in the drug discovery process. After the implementation of novel in vitro technologies like high-throughput screening and combinatorial chemistry, the capacity of synthesizing and testing compounds increased exponentially but the need for a rational selection of the compounds arose as well. The prioritisation of compounds in terms of their predicted chances of displaying the targeted activity is thus one of the first applications of the ligand-based virtual ligand screening based on SHED descriptors. This application has shown very good results, both in terms of enrichment of actives in the hit list and in terms of scaffold hopping ability, i.e. the novelty of the scaffolds of the found actives in the top ranked compounds.
Actually, this methodology can be extended to a chemogenomics view of the drug discovery process, using the descriptors to build ligand-based models of all the proteins with any ligand information. This broader approach, the virtual target profiling, is a step towards completing the activity matrix between all possible chemical compounds and all relevant targets. Moreover, a deeper analysis of this complete matrix generated by virtual target profiling can lead us to a network pharmacology perspective of the drug discovery process. This direction can be further followed by adding to ligand-target information the information about pathways and systems approaches, leading to a systems chemical biology approach that could help understanding biological processes as a whole and identifying more rationally novel and promising drug targets.
Tai, Hio Kuan. "Protein-ligand docking and virtual screening based on chaos-embedded particle swarm optimization algorithm." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3948431.
Full textBehren, Mathias Michael von Verfasser], and Matthias [Akademischer Betreuer] [Rarey. "Ligand-based Virtual Screening Utilizing Partial Shape Constraints / Mathias Michael von Behren ; Betreuer: Matthias Rarey." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://nbn-resolving.de/urn:nbn:de:gbv:18-86060.
Full textBehren, Mathias Michael von [Verfasser], and Matthias [Akademischer Betreuer] Rarey. "Ligand-based Virtual Screening Utilizing Partial Shape Constraints / Mathias Michael von Behren ; Betreuer: Matthias Rarey." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://d-nb.info/113732371X/34.
Full textSantos, Alan Diego dos. "Ranking ligands in structure-based virtual screening using siamese neural networks." Pontif?cia Universidade Cat?lica do Rio Grande do Sul, 2017. http://tede2.pucrs.br/tede2/handle/tede/7763.
Full textRejected by Caroline Xavier (caroline.xavier@pucrs.br), reason: Devolvido devido ? falta da folha de rosto (p?gina com as principais informa??es) no arquivo PDF, passando direto da capa para a ficha catalogr?fica. on 2017-11-29T19:03:08Z (GMT)
Submitted by PPG Ci?ncia da Computa??o (ppgcc@pucrs.br) on 2017-11-30T15:50:58Z No. of bitstreams: 1 Alan_Diego_dos_Santos_dis.pdf: 1884320 bytes, checksum: 6e508a972289e66527fd4b76cbae3586 (MD5)
Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-12-04T16:14:52Z (GMT) No. of bitstreams: 1 Alan_Diego_dos_Santos_dis.pdf: 1884320 bytes, checksum: 6e508a972289e66527fd4b76cbae3586 (MD5)
Made available in DSpace on 2017-12-04T16:18:35Z (GMT). No. of bitstreams: 1 Alan_Diego_dos_Santos_dis.pdf: 1884320 bytes, checksum: 6e508a972289e66527fd4b76cbae3586 (MD5) Previous issue date: 2017-03-29
Triagem virtual de bancos de dados de ligantes ? amplamente utilizada nos est?gios iniciais do processo de descoberta de f?rmacos. Abordagens computacionais ?docam? uma pequena mol?cula dentro do s?tio ativo de um estrutura biol?gica alvo e avaliam a afinidade das intera??es entre a mol?cula e a estrutura. Todavia, os custos envolvidos ao aplicar algoritmos de docagem molecular em grandes bancos de ligantes s?o proibitivos, dado a quantidade de recursos computacionais necess?rios para essa execu??o. Nesse contexto, estrat?gias de aprendizagem de m?quina podem ser aplicadas para ranquear ligantes baseadas na afinidade com determinada estrutura biol?gica e, dessa forma, reduzir o n?mero de compostos qu?micos a serem testados. Nesse trabalho, propomos um modelo para ranquear ligantes baseados na arquitetura de redes neurais siamesas. Esse modelo calcula a compatibilidade entre receptor e ligante usando grades de propriedades bioqu?micas. N?s tamb?m mostramos que esse modelo pode aprender a identificar intera??es moleculares importantes entre ligante e receptor. A compatibilidade ? calculada baseada em rela??o ? conforma??o do ligante, independente de sua posi??o e orienta??o em rela??o ao receptor. O modelo proposto foi treinado usando ligantes ativos previamente conhecidos e mol?culas chamarizes (decoys) em um modelo de receptor totalmente flex?vel (Fully Flexible Receptor - FFR) do complexo InhA-NADH da Mycobacterium tuberculosis, encontrando ?timos resultados.
Structure-based virtual screening (SBVS) on compounds databases has been widely applied in early stage of the drug discovery on drug target with known 3D structure. In SBVS, computational approaches usually ?dock? small molecules into binding site of drug target and ?score? their binding affinity. However, the costs involved in applying docking algorithms into huge compounds databases are prohibitive, due to the computational resources required by this operation. In this context,different types of machine learning strategies can be applied to rank ligands, based on binding affinity,and to reduce the number of compounds to be tested. In this work, we propose a deep learning energy-based model using siamese neural networks to rank ligands. This model takes as inputs grids of biochemical properties of ligands and receptors and calculates their compatibility. We show that the model can learn to identify important biochemical interactions between ligands and receptors. Besides, we demonstrate that the compatibility score is computed based only on conformation of small molecule, independent of its position and orientation in relation to the receptor. The proposed model was trained using known ligands and decoys in a Fully Flexible Receptor model of InhA-NADH complex (PDB ID: 1ENY), having achieved outstanding results.
Nawsheen, Sabia. "Evaluation of Fragment-Based Virtual Screening by Applying Docking on Fragments obtained from Optimized Ligands." Thesis, Uppsala universitet, Institutionen för läkemedelskemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446388.
Full textBooks on the topic "Ligand based virtual screening"
Klebe, Gerhard. Virtual Screening: An Alternative or Complement to High Throughput Screening? Springer, 2010.
Find full text1965-, Alvarez Juan, and Shoichet Brian 1963-, eds. Virtual screening in drug discovery. Boca Raton: Taylor & Francis, 2005.
Find full text(Editor), Juan Alvarez, and Brian Shoichet (Editor), eds. Virtual Screening in Drug Discovery. CRC, 2005.
Find full textGerhard, Klebe, ed. Virtual screening: An alternative or complement to high throughput screening : proceedings of the Workshop 'New Approaches in Drug Design and Discovery', special topic 'Virtual Screening', SchloB Rauischholzhausen, Germany, March 15-18, 1999. Dordrecht [Netherlands]: Kluwer Academic Publishers, 2000.
Find full textBook chapters on the topic "Ligand based virtual screening"
Koeppen, Herbert, Jan Kriegl, Uta Lessel, Christofer S. Tautermann, and Bernd Wellenzohn. "Ligand-Based Virtual Screening." In Methods and Principles in Medicinal Chemistry, 61–85. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633326.ch3.
Full textPitt, William R., Mark D. Calmiano, Boris Kroeplien, Richard D. Taylor, James P. Turner, and Michael A. King. "Structure-Based Virtual Screening for Novel Ligands." In Protein-Ligand Interactions, 501–19. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-398-5_19.
Full textAbdo, Ammar, and Naomie Salim. "Ligand-Based Virtual Screening Using Bayesian Inference Network." In Library Design, Search Methods, and Applications of Fragment-Based Drug Design, 57–69. Washington, DC: American Chemical Society, 2011. http://dx.doi.org/10.1021/bk-2011-1076.ch004.
Full textBhunia, Shome S., Mridula Saxena, and Anil K. Saxena. "Ligand- and Structure-Based Virtual Screening in Drug Discovery." In Biophysical and Computational Tools in Drug Discovery, 281–339. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/7355_2021_130.
Full textHowe, Trevor, Daniele Bemporad, and Gary Tresadern. "Scenarios and Case Studies: Examples for Ligand-Based Virtual Screening." In Methods and Principles in Medicinal Chemistry, 359–79. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633326.ch13.
Full textMatsuyama, Yusuke, and Takashi Ishida. "Stacking Multiple Molecular Fingerprints for Improving Ligand-Based Virtual Screening." In Intelligent Computing Theories and Application, 279–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95933-7_35.
Full textShin, Woong-Hee, and Daisuke Kihara. "Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein–Ligand Docking Method." In Methods in Molecular Biology, 105–21. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7756-7_7.
Full textAl-Dabbagh, Mohammed Mumtaz, Naomie Salim, and Faisal Saeed. "Methods to Improve Ranking Chemical Structures in Ligand-Based Virtual Screening." In Advances in Intelligent Systems and Computing, 259–69. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33582-3_25.
Full textNasser, Maged, Naomie Salim, Hentabli Hamza, and Faisal Saeed. "Deep Belief Network for Molecular Feature Selection in Ligand-Based Virtual Screening." In Advances in Intelligent Systems and Computing, 3–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99007-1_1.
Full textPuertas-Martín, Savíns, Juana L. Redondo, Antonio J. Banegas-Luna, Ester M. Garzón, Horacio Pérez-Sánchez, Valerie J. Gillet, and Pilar M. Ortigosa. "Virtual Screening Based on Electrostatic Similarity and Flexible Ligands." In Computational Science and Its Applications – ICCSA 2022 Workshops, 127–39. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10562-3_10.
Full textConference papers on the topic "Ligand based virtual screening"
Skoda, Petr, and David Hoksza. "Benchmarking platform for ligand-based virtual screening." In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016. http://dx.doi.org/10.1109/bibm.2016.7822693.
Full textSkoda, Petr, David Hoksza, and Jan Jelinek. "Platform for ligand-based virtual screening integration." In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8218015.
Full textBabaria, Khushboo, Sanya Ambegaokar, Shubhankar Das, and Hemant Palivela. "Algorithms for ligand based virtual screening in drug discovery." In 2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT). IEEE, 2015. http://dx.doi.org/10.1109/icatcct.2015.7457004.
Full textPalivela, Hemant, Divesh Kubal, and C. R. Nirmala. "Multiple kernel learning techniques for ligand based virtual screening." In 2017 International Conference on Computer Communication and Informatics (ICCCI). IEEE, 2017. http://dx.doi.org/10.1109/iccci.2017.8117724.
Full textUllrich, Katrin, Michael Kamp, Thomas Gartner, Martin Vogt, and Stefan Wrobel. "Ligand-Based Virtual Screening with Co-regularised Support Vector Regression." In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). IEEE, 2016. http://dx.doi.org/10.1109/icdmw.2016.0044.
Full textBahi, Meriem, and Mohamed Batouche. "Deep Learning for Ligand-Based Virtual Screening in Drug Discovery." In 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS). IEEE, 2018. http://dx.doi.org/10.1109/pais.2018.8598488.
Full textCavasotto, Claudio N. "Ligand Docking and Virtual Screening in Structure-based Drug Discovery." In FROM PHYSICS TO BIOLOGY: The Interface between Experiment and Computation - BIFI 2006 II International Congress. AIP, 2006. http://dx.doi.org/10.1063/1.2345621.
Full text"Deep Belief Networks for Ligand-Based Virtual Screening of Drug Design." In 2016 the 6th International Workshop on Computer Science and Engineering. WCSE, 2016. http://dx.doi.org/10.18178/wcse.2016.06.115.
Full textPark, Jung Woo, and Sung-Wha Hong. "Ligand- and Structure-based Virtual Screening Studies for the Discovery of Selective Inhibitors." In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2019. http://dx.doi.org/10.1109/bibm47256.2019.8983013.
Full textAhmed, Ali, Ammar Abdo, and Naomie Salim. "An enhancement of Bayesian inference network for ligand-based virtual screening using minifingerprints." In Fourth International Conference on Machine Vision (ICMV 11), edited by Zhu Zeng and Yuting Li. SPIE, 2011. http://dx.doi.org/10.1117/12.920338.
Full textReports on the topic "Ligand based virtual screening"
Altstein, Miriam, and Ronald J. Nachman. Rational Design of Insect Control Agent Prototypes Based on Pyrokinin/PBAN Neuropeptide Antagonists. United States Department of Agriculture, August 2013. http://dx.doi.org/10.32747/2013.7593398.bard.
Full textRafaeli, Ada, and Russell Jurenka. Molecular Characterization of PBAN G-protein Coupled Receptors in Moth Pest Species: Design of Antagonists. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7593390.bard.
Full textEyal, Yoram, and Sheila McCormick. Molecular Mechanisms of Pollen-Pistil Interactions in Interspecific Crossing Barriers in the Tomato Family. United States Department of Agriculture, May 2000. http://dx.doi.org/10.32747/2000.7573076.bard.
Full textAltstein, Miriam, and Ronald Nachman. Rationally designed insect neuropeptide agonists and antagonists: application for the characterization of the pyrokinin/Pban mechanisms of action in insects. United States Department of Agriculture, October 2006. http://dx.doi.org/10.32747/2006.7587235.bard.
Full text