Journal articles on the topic 'LiGaS2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'LiGaS2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Reshak, Ali H., S. Auluck, I. V. Kityk, Y. Al-Douri, R. Khenata, and A. Bouhemadou. "Electronic properties of orthorhombic LiGaS2 and LiGaSe2." Applied Physics A 94, no. 2 (2008): 315–20. http://dx.doi.org/10.1007/s00339-008-4794-6.
Full textVasilyeva, Inga G., and Ruslan E. Nikolaev. "Non-stoichiometry and point native defects in non-oxide non-linear optical large single crystals: advantages and problems." CrystEngComm 24, no. 8 (2022): 1495–506. http://dx.doi.org/10.1039/d1ce01423d.
Full textAtuchin, V. V., L. I. Isaenko, V. G. Kesler, S. Lobanov, H. Huang, and Z. S. Lin. "Electronic structure of LiGaS2." Solid State Communications 149, no. 13-14 (2009): 572–75. http://dx.doi.org/10.1016/j.ssc.2008.12.048.
Full textJelínek, Michal, Milan Frank, Václav Kubeček, et al. "70 MW-Level Picosecond Mid-Infrared Radiation Generation by Difference Frequency Generation in AgGaS2, BaGa4Se7, LiGaSe2, and LiGaS2." IEEE Photonics Journal 17, no. 2 (2025): 1–7. https://doi.org/10.1109/JPHOT.2025.3542540.
Full textKumari, J., C. Singh, B. L. Choudhary, and A. S. Verma. "First-principles study for physical properties and stability of Li based chalcopyrite semiconductors: Reliable for green energy sources." Physics and Chemistry of Solid State 23, no. 4 (2022): 728–40. http://dx.doi.org/10.15330/pcss.23.4.728-740.
Full textLeal-Gonzalez, J., S. A. Melibary, and A. J. Smith. "Structure of lithium gallium sulfide, LiGaS2." Acta Crystallographica Section C Crystal Structure Communications 46, no. 11 (1990): 2017–19. http://dx.doi.org/10.1107/s0108270190002165.
Full textKato, Kiyoshi, Nobuhiro Umemura, Ludmila Isaenko, et al. "Thermo-optic dispersion formula for LiGaS2." Applied Optics 58, no. 6 (2019): 1519. http://dx.doi.org/10.1364/ao.58.001519.
Full textKurus, Alexey, Alexander Yelisseyev, Sergei Lobanov, et al. "Thermophysical properties of lithium thiogallate that are important for optical applications." RSC Advances 11, no. 62 (2021): 39177–87. http://dx.doi.org/10.1039/d1ra05698k.
Full textChen, Bo-Han, Tamas Nagy, and Peter Baum. "Efficient generation of broadband MIR radiation by difference–frequency generation in LiGaS2." EPJ Web of Conferences 205 (2019): 01019. http://dx.doi.org/10.1051/epjconf/201920501019.
Full textDong, Yue Qiu, Yi Yin, Jin Jer Huang, et al. "Optimization on the frequency conversion of LiGaS2 crystal." Laser Physics 29, no. 9 (2019): 095403. http://dx.doi.org/10.1088/1555-6611/ab3847.
Full textLEAL-GONZALEZ, J., S. S. MELIBARY, and A. J. SMITH. "ChemInform Abstract: Structure of Lithium Gallium Sulfide, LiGaS2." ChemInform 22, no. 5 (2010): no. http://dx.doi.org/10.1002/chin.199105008.
Full textDrebushchak, V. A., L. I. Isaenko, S. I. Lobanov, P. G. Krinitsin, and S. A. Grazhdannikov. "Experimental heat capacity of LiInS2, LiInSe2, LiGaS2, LiGaSe2, and LiGaTe2 from 180 to 460 K." Journal of Thermal Analysis and Calorimetry 129, no. 1 (2017): 103–8. http://dx.doi.org/10.1007/s10973-017-6176-9.
Full textMa, Tian-hui, Chun-hui Yang, Ying Xie, et al. "First-principles calculations of the structural, elastic, electronic and optical properties of orthorhombic LiGaS2 and LiGaSe2." Physica B: Condensed Matter 405, no. 1 (2010): 363–68. http://dx.doi.org/10.1016/j.physb.2009.08.091.
Full textHu, Zhixuan, and Jingui Ma. "Simultaneously Wavelength- and Temperature-Insensitive Mid-Infrared Optical Parametric Amplification with LiGaS2 Crystal." Applied Sciences 12, no. 6 (2022): 2886. http://dx.doi.org/10.3390/app12062886.
Full textAtuchin, V. V., Z. S. Lin, L. I. Isaenko, V. G. Kesler, V. N. Kruchinin, and S. I. Lobanov. "Optical properties of LiGaS2: anab initiostudy and spectroscopic ellipsometry measurement." Journal of Physics: Condensed Matter 21, no. 45 (2009): 455502. http://dx.doi.org/10.1088/0953-8984/21/45/455502.
Full textVu, Tuan V., A. A. Lavrentyev, B. V. Gabrelian, et al. "Optical and electronic properties of lithium thiogallate (LiGaS2): experiment and theory." RSC Advances 10, no. 45 (2020): 26843–52. http://dx.doi.org/10.1039/d0ra03280h.
Full textYelisseyev, A., Z. S. Lin, M. Starikova, L. Isaenko, and S. Lobanov. "Optical transitions due to native defects in nonlinear optical crystals LiGaS2." Journal of Applied Physics 111, no. 11 (2012): 113507. http://dx.doi.org/10.1063/1.4723645.
Full textKumar, V., S. Chandra, and R. Santosh. "First-Principles Calculations of the Structural, Electronic, Elastic and Optical Properties of LiGaS2 and LiGaSe2 Semiconductors Under Different Pressures." Journal of Electronic Materials 47, no. 2 (2017): 1223–31. http://dx.doi.org/10.1007/s11664-017-5894-x.
Full textQu, Shizhen, Houkun Liang, Kun Liu та ін. "9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2". Optics Letters 44, № 10 (2019): 2422. http://dx.doi.org/10.1364/ol.44.002422.
Full textChen, Bo-Han, Emanuel Wittmann, Yuya Morimoto, Peter Baum, and Eberhard Riedle. "Octave-spanning single-cycle middle-infrared generation through optical parametric amplification in LiGaS2." Optics Express 27, no. 15 (2019): 21306. http://dx.doi.org/10.1364/oe.27.021306.
Full textKurus, Aleksey, Sergey Lobanov, Sergey Grazhdannikov, Vladimir Shlegel, and Ludmila Isaenko. "LiGaS2 crystal growth under low temperature gradient conditions by the modified Bridgman method." Materials Science and Engineering: B 262 (December 2020): 114715. http://dx.doi.org/10.1016/j.mseb.2020.114715.
Full textAtuchin, V. V., L. I. Isaenko, V. G. Kesler, and S. I. Lobanov. "Core level photoelectron spectroscopy of LiGaS2 and Ga–S bonding in complex sulfides." Journal of Alloys and Compounds 497, no. 1-2 (2010): 244–48. http://dx.doi.org/10.1016/j.jallcom.2010.03.020.
Full textChen, B. H., T. Nagy, and P. Baum. "Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation." Optics Letters 43, no. 8 (2018): 1742. http://dx.doi.org/10.1364/ol.43.001742.
Full textEifler, Andreas, Volker Riede, Jaqueline Brückner, et al. "Band Gap Energies and Lattice Vibrations of the Lithium Ternary Compounds LiInSe2, LiInS2, LiGaSe2and LiGaS2." Japanese Journal of Applied Physics 39, S1 (2000): 279. http://dx.doi.org/10.7567/jjaps.39s1.279.
Full textKinyaevskiy, I. O., A. V. Koribut, Ya V. Grudtsyn, et al. "Frequency down-conversion of a chirped Ti:sapphire laser pulse with BaWO4 Raman shifter and second-order nonlinear crystal." Laser Physics Letters 19, no. 9 (2022): 095403. http://dx.doi.org/10.1088/1612-202x/ac7f36.
Full textTyazhev, Aleksey, Vitaly Vedenyapin, Georgi Marchev, et al. "Singly-resonant optical parametric oscillation based on the wide band-gap mid-IR nonlinear optical crystal LiGaS2." Optical Materials 35, no. 8 (2013): 1612–15. http://dx.doi.org/10.1016/j.optmat.2013.03.016.
Full textLiu, Keyang, Xin Liu, Jinhui Li, et al. "kHz, 10s TW, Femtosecond Source Based on Yb:YAG Thin Disk Laser Pumped OPCPA of Low Quantum Defect." Crystals 13, no. 3 (2023): 481. http://dx.doi.org/10.3390/cryst13030481.
Full textKinyaevskiy, I. O., A. V. Koribut, L. V. Seleznev, Yu M. Klimachev, E. E. Dunaeva та A. A. Ionin. "Frequency conversion of a chirped Ti:sapphire laser pulse to 11.4 μm wavelength with SrMoO4 Raman shifter and LiGaS2 DFG crystal". Optics & Laser Technology 169 (лютий 2024): 110035. http://dx.doi.org/10.1016/j.optlastec.2023.110035.
Full textSmetanin, S. N., M. Jelínek, V. Kubeček, et al. "50-µJ level, 20-picosecond, narrowband difference-frequency generation at 46, 54, 75, 92, and 108 µm in LiGaS2 and LiGaSe2 at Nd:YAG laser pumping and various crystalline Raman laser seedings." Optical Materials Express 10, no. 8 (2020): 1881. http://dx.doi.org/10.1364/ome.395370.
Full textWei, Lei, Yangbin Fu, Jueru Li, et al. "Theoretical Study on the Intrinsic Source of the Large Thermal Conductivity of Li-Based Chalcogenide Nonlinear Optical Crystals: From AgGaS2 to LiGaS2." Crystal Growth & Design 20, no. 6 (2020): 4150–56. http://dx.doi.org/10.1021/acs.cgd.0c00415.
Full textHeiner, Zsuzsanna, Li Wang, Valentin Petrov, and Mark Mero. "Broadband vibrational sum-frequency generation spectrometer at 100 kHz in the 950-1750 cm−1 spectral range utilizing a LiGaS2 optical parametric amplifier." Optics Express 27, no. 11 (2019): 15289. http://dx.doi.org/10.1364/oe.27.015289.
Full textTian, Kan, Linzhen He, Xuemei Yang, and Houkun Liang. "Mid-Infrared Few-Cycle Pulse Generation and Amplification." Photonics 8, no. 8 (2021): 290. http://dx.doi.org/10.3390/photonics8080290.
Full textMero, Mark, Li Wang, Weidong Chen та ін. "Laser-induced damage of nonlinear crystals in ultrafast, high-repetitionrate, mid-infrared optical parametric amplifiers pumped at 1 μm". Proc. SPIE 11063 (8 липня 2019): 1106307. https://doi.org/10.1117/12.2540125.
Full textLee, Jaeseok, Youngjun Lee, Young Mee Jung, Ju Hyun Park, Hyuk Sang Yoo, and Jongmin Park. "Discovery of E3 Ligase Ligands for Target Protein Degradation." Molecules 27, no. 19 (2022): 6515. http://dx.doi.org/10.3390/molecules27196515.
Full textSharma, Chiranjeev, Myeong A. Choi, Yoojin Song, and Young Ho Seo. "Rational Design and Synthesis of HSF1-PROTACs for Anticancer Drug Development." Molecules 27, no. 5 (2022): 1655. http://dx.doi.org/10.3390/molecules27051655.
Full textKounde, Cyrille S., Maria M. Shchepinova, Charlie N. Saunders, et al. "A caged E3 ligase ligand for PROTAC-mediated protein degradation with light." Chemical Communications 56, no. 41 (2020): 5532–35. http://dx.doi.org/10.1039/d0cc00523a.
Full textOhtake, Fumiaki, Atsushi Baba, Ichiro Takada, et al. "Dioxin receptor is a ligand-dependent E3 ubiquitin ligase." Nature 446, no. 7135 (2007): 562–66. http://dx.doi.org/10.1038/nature05683.
Full textYan, Yuqian, Jingwei Shao, Donglin Ding, et al. "3-Aminophthalic acid, a new cereblon ligand for targeted protein degradation by O’PROTAC." Chemical Communications 58, no. 14 (2022): 2383–86. http://dx.doi.org/10.1039/d1cc06525d.
Full textKoo, Bon-Kyoung, Ki-Jun Yoon, Kyeong-Won Yoo, et al. "Mind Bomb-2 Is an E3 Ligase for Notch Ligand." Journal of Biological Chemistry 280, no. 23 (2005): 22335–42. http://dx.doi.org/10.1074/jbc.m501631200.
Full textOmari, Kamel El, Jingshan Ren, Louise E. Bird, et al. "Molecular Architecture and Ligand Recognition Determinants for T4 RNA Ligase." Journal of Biological Chemistry 281, no. 3 (2005): 1573–79. http://dx.doi.org/10.1074/jbc.m509658200.
Full textReynders, Martin, Bryan S. Matsuura, Marleen Bérouti, et al. "PHOTACs enable optical control of protein degradation." Science Advances 6, no. 8 (2020): eaay5064. http://dx.doi.org/10.1126/sciadv.aay5064.
Full textKoravovic, Mladen, Bojan Markovic, Milena Kovacevic, Milena Rmandic, and Gordana Tasic. "Protein degradation induced by PROTAC molecules as emerging drug discovery strategy." Journal of the Serbian Chemical Society, no. 00 (2022): 27. http://dx.doi.org/10.2298/jsc211209027k.
Full textKim, Kang Ho, Jeong Min Yoon, A. Hyun Choi, Woo Sik Kim, Gha Young Lee та Jae Bum Kim. "Liver X Receptor Ligands Suppress Ubiquitination and Degradation of LXRα by Displacing BARD1/BRCA1". Molecular Endocrinology 23, № 4 (2009): 466–74. http://dx.doi.org/10.1210/me.2008-0295.
Full textTateishi, Yukiyo, Raku Sonoo, Yu-ichi Sekiya та ін. "Turning Off Estrogen Receptor β-Mediated Transcription Requires Estrogen-Dependent Receptor Proteolysis". Molecular and Cellular Biology 26, № 21 (2006): 7966–76. http://dx.doi.org/10.1128/mcb.00713-06.
Full textKitamura, Y., A. Ebihara, A. Shinkai, K. Hirotsu, and S. Kuramitsu. "Ligand-induced conformational change of D-alanine:D-alanine ligase fromThermus thermophilusHB8." Acta Crystallographica Section A Foundations of Crystallography 64, a1 (2008): C272. http://dx.doi.org/10.1107/s0108767308091307.
Full textPeng, Zhi, Taiping Shi, and Dalong Ma. "RNF122: A novel ubiquitin ligase associated with calcium-modulating cyclophilin ligand." BMC Cell Biology 11, no. 1 (2010): 41. http://dx.doi.org/10.1186/1471-2121-11-41.
Full textPurushothaman, Sudha, Garima Gupta, Richa Srivastava, Vasanthakumar Ganga Ramu, and Avadhesha Surolia. "Ligand Specificity of Group I Biotin Protein Ligase of Mycobacterium tuberculosis." PLoS ONE 3, no. 5 (2008): e2320. http://dx.doi.org/10.1371/journal.pone.0002320.
Full textWarr, Matthew R., Stephane Acoca, Zhiqian Liu, et al. "BH3-ligand regulates access of MCL-1 to its E3 ligase." FEBS Letters 579, no. 25 (2005): 5603–8. http://dx.doi.org/10.1016/j.febslet.2005.09.028.
Full textCiulli, Alessio. "Targeted Protein Degradation with Small Molecules: How PROTACs Work." Proceedings 22, no. 1 (2019): 115. http://dx.doi.org/10.3390/proceedings2019022115.
Full textMiao, Yinglong, Apurba Bhattarai, and Jinan Wang. "Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD): Characterization of Ligand Binding Thermodynamics and Kinetics." Journal of Chemical Theory and Computation 16, no. 9 (2020): 5526–47. http://dx.doi.org/10.1021/acs.jctc.0c00395.
Full text