Journal articles on the topic 'Lightly and heavily doped substrate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lightly and heavily doped substrate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sanjay, Sharma, Yadav R.P., and Janyani Vijay. "Substrate Current Evaluation for Lightly and Heavily Doped MOSFETs at 45 nm process Using Physical Models." Bulletin of Electrical Engineering and Informatics 5, no. 1 (2016): 120–25. https://doi.org/10.11591/eei.v5i1.556.
Full textSasaki, Sho, Jun Suda, and Tsunenobu Kimoto. "Doping-Induced Lattice Mismatch and Misorientation in 4H-SiC Crystals." Materials Science Forum 717-720 (May 2012): 481–84. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.481.
Full textDoi, Takuma, Shigehisa Shibayama, Mitsuo Sakashita, Kazutoshi Kojima, Mitsuaki Shimizu, and Osamu Nakatsuka. "Low-temperature formation of Mg/n-type 4H-SiC ohmic contacts with atomically flat interface by lowering of Schottky barrier height." Applied Physics Express 15, no. 1 (2021): 015501. http://dx.doi.org/10.35848/1882-0786/ac407f.
Full textClouter, Maynard J., Yue Ke, Robert P. Devaty, Wolfgang J. Choyke, Y. Shishkin, and Stephen E. Saddow. "Raman Spectra of a 4H-SiC Epitaxial Layer on Porous and Non-Porous 4H-SiC Substrates." Materials Science Forum 556-557 (September 2007): 415–18. http://dx.doi.org/10.4028/www.scientific.net/msf.556-557.415.
Full textXia, Xinyi, Minghan Xian, Fan Ren, Md Abu Jafar Rasel, Aman Haque, and S. J. Pearton. "Thermal Stability of Transparent ITO/n-Ga2O3/n+-Ga2O3/ITO Rectifiers." ECS Journal of Solid State Science and Technology 10, no. 11 (2021): 115005. http://dx.doi.org/10.1149/2162-8777/ac3ace.
Full textHazenboom, S., T. S. Fiez, and K. Mayaram. "A Comparison of Substrate Noise Coupling in Lightly and Heavily Doped CMOS Processes for 2.4-GHz LNAs." IEEE Journal of Solid-State Circuits 41, no. 3 (2006): 574–87. http://dx.doi.org/10.1109/jssc.2006.869790.
Full textKim, Kyoung-Ho, Minh-Tan Ha, Heesoo Lee, et al. "Microstructural Gradational Properties of Sn-Doped Gallium Oxide Heteroepitaxial Layers Grown Using Mist Chemical Vapor Deposition." Materials 15, no. 3 (2022): 1050. http://dx.doi.org/10.3390/ma15031050.
Full textSaw, Kim Guan, Sau Siong Tneh, Swee Yong Pung, Sha Shiong Ng, F. K. Yam, and Zainuriah Hassan. "Ultraviolet Photoresponse Properties of Zinc Oxide Nanorods on Heavily Boron-Doped Diamond Heterostructure." Advanced Materials Research 832 (November 2013): 172–77. http://dx.doi.org/10.4028/www.scientific.net/amr.832.172.
Full textde Lanerolle, N. "Titanium silicide growth by rapid-thermal processing of Ti films deposited on lightly doped and heavily doped silicon substrates." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 5, no. 6 (1987): 1689. http://dx.doi.org/10.1116/1.583649.
Full textMazzola, Michael S., Swapna G. Sunkari, Janice Mazzola, et al. "Improved Resolution of Epitaxial Thin Film Doping Using FTIR Reflectance Spectroscopy." Materials Science Forum 483-485 (May 2005): 397–400. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.397.
Full textBahena, Joel, Jonathan Fijal, Phillip Tyler, John Taddei, Matthias Wiemann, and Martin Figge. "An Alternate Approach to Backside Thinning: A Doping Selective Silicon Wet Etch." ECS Meeting Abstracts MA2022-01, no. 29 (2022): 1289. http://dx.doi.org/10.1149/ma2022-01291289mtgabs.
Full textSueoka, Koji. "Oxygen Precipitation in Lightly and Heavily Doped Czochralski Silicon." ECS Transactions 3, no. 4 (2019): 71–87. http://dx.doi.org/10.1149/1.2355747.
Full textKimoto, Tsunenobu, Ryoya Ishikawa, Xilun Chi, Kyota Mikami, Keita Tachiki, and Mitsuaki Kaneko. "(Invited) Impacts of Anisotropic Material Properties on Performance of SiC Power Devices." ECS Meeting Abstracts MA2024-02, no. 32 (2024): 2294. https://doi.org/10.1149/ma2024-02322294mtgabs.
Full textLEWIS, R. A., and R. E. M. VICKERS. "TERAHERTZ MAGNETOSPECTROSCOPY OF HEAVILY-DOPED Si(P)." International Journal of Modern Physics B 23, no. 12n13 (2009): 2856–60. http://dx.doi.org/10.1142/s0217979209062451.
Full textLi, H., J. Y. Ke, J. B. Pang, Bo Wang, and Z. Wang. "Defects in Electron Irradiation Te-Doped GaSb Studied by Positron Lifetime Spectroscopy." Materials Science Forum 607 (November 2008): 140–42. http://dx.doi.org/10.4028/www.scientific.net/msf.607.140.
Full textJin, Xin, and Hai Wang. "Space Charge Limited Current and Magnetoresistance in Si." Advanced Materials Research 750-752 (August 2013): 952–55. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.952.
Full textKouchi, T., K. Yoshinaga, S. Nishioka, et al. "75As NMR studies on iron-based La1111 superconductors in lightly and heavily electron doped states." Journal of Physics: Conference Series 2323, no. 1 (2022): 012011. http://dx.doi.org/10.1088/1742-6596/2323/1/012011.
Full textBronckers, Stephane, Geert Van der Plas, Gerd Vandersteen, and Yves Rolain. "Substrate Noise Coupling Mechanisms in Lightly Doped CMOS Transistors." IEEE Transactions on Instrumentation and Measurement 59, no. 6 (2010): 1727–33. http://dx.doi.org/10.1109/tim.2009.2024370.
Full textAbramson, A. R., P. Nieva, H. Tada, P. Zavracky, I. N. Miaoulis, and P. Y. Wong. "Effect of doping level during rapid thermal processing of multilayer structures." Journal of Materials Research 14, no. 6 (1999): 2402–10. http://dx.doi.org/10.1557/jmr.1999.0323.
Full textKalinina, Evgenia, Alexandr Lebedev, Baptiste Berenguier, Laurent Ottaviani, and Vladimir A. Skuratov. "SiC UV Detectors under Heavy Ions Irradiation." Materials Science Forum 821-823 (June 2015): 867–70. http://dx.doi.org/10.4028/www.scientific.net/msf.821-823.867.
Full textLi, Zhi-Peng, Toshiyuki Mori, Fei Ye, Ding Rong Ou, Jin Zou, and John Drennan. "Dislocation Associated Incubational Domain Formation in Lightly Gadolinium-Doped Ceria." Microscopy and Microanalysis 17, no. 1 (2010): 49–53. http://dx.doi.org/10.1017/s143192761009416x.
Full textDahal, Rajendra, Sauvik Chowdhury, Collin W. Hitchcock, T. Paul Chow, and Ishwara B. Bhat. "Fabrication of Thick Free-Standing Lightly-Doped n-Type 4H-SiC Wafers." Materials Science Forum 897 (May 2017): 379–82. http://dx.doi.org/10.4028/www.scientific.net/msf.897.379.
Full textLuo, Lan, Guofu Niu, Kurt A. Moen, and John D. Cressler. "Compact Modeling of the Temperature Dependence of Parasitic Resistances in SiGe HBTs Down to 30 K." IEEE Transactions on Electron Devices 56, no. 10 (2009): 2169–77. http://dx.doi.org/10.1109/ted.2009.2028046.
Full textMikhaylov, Aleksey I., S. A. Reshanov, Adolf Schöner, et al. "High Channel Mobility 4H-SiC MOSFETs by As and P Implantation Prior to Thermal Oxidation in N2O Atmosphere." Materials Science Forum 858 (May 2016): 651–54. http://dx.doi.org/10.4028/www.scientific.net/msf.858.651.
Full textSingh, Pawan Kumar, and Sanjay Sharma. "Substrate Coupling of RF CMOS on Lightly Doped Substrate for Nanoscale Mixed-Signal Design." Journal of Computational and Theoretical Nanoscience 11, no. 4 (2014): 1184–88. http://dx.doi.org/10.1166/jctn.2014.3480.
Full textMeintjes, Ernesta M., William W. Warren,, and James P. Yesinowski. "Temperature-dependent 29Si NMR resonance shifts in lightly- and heavily-doped Si:P." Solid State Nuclear Magnetic Resonance 55-56 (October 2013): 91–94. http://dx.doi.org/10.1016/j.ssnmr.2013.10.002.
Full textLee, Ho‐Jun, Chang‐Soo Kim, Chul‐Hi Han, and Choong‐Ki Kim. "Direct growing of lightly doped epitaxial silicon without misfit dislocation on heavily boron‐doped silicon layer." Applied Physics Letters 65, no. 17 (1994): 2139–41. http://dx.doi.org/10.1063/1.112769.
Full textZhang, Le, Er-Ping Li, Xiao-Peng Yu, and Ran Hao. "Modeling and Optimization of Substrate Electromagnetic Coupling and Isolation in Modern Lightly Doped CMOS Substrate." IEEE Transactions on Electromagnetic Compatibility 59, no. 2 (2017): 662–69. http://dx.doi.org/10.1109/temc.2016.2629702.
Full textZheng, G. Q., T. Kuse, Y. Kitaoka, et al. "17O NMR study of La2−xSrxCuO4 in the lightly-and heavily-doped regions." Physica C: Superconductivity 208, no. 3-4 (1993): 339–46. http://dx.doi.org/10.1016/0921-4534(93)90206-6.
Full textHewitt, S. B., S. P. Tay, N. G. Tarr, and A. R. Boothroyd. "Silicon carbide emitter diodes by LPCVD (low-pressure chemical vapour deposition) using di-tert-butylsilane." Canadian Journal of Physics 70, no. 10-11 (1992): 946–48. http://dx.doi.org/10.1139/p92-151.
Full textShiba, Seiji, and Koji Sueoka. "TEM Observation of the Dislocations Nucleated from Cracks inside Lightly or Heavily Doped Czochralski Silicon Wafers." Advances in Condensed Matter Physics 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/541318.
Full textFushimi, Hiroshi, Masanori Shinohara, and Kazumi Wada. "Effects of native defects on carrier concentrations in heavily Si-doped and adjoining lightly doped GaAs layers." Journal of Applied Physics 81, no. 4 (1997): 1745–51. http://dx.doi.org/10.1063/1.364030.
Full textZhang, Xue Nan, Jian Hong Li, Yu Tian Wang, et al. "Gas Phase Phosphorus Heavily-Doped FZ Silicon Thermal Field Design and Growth Method." Advanced Materials Research 430-432 (January 2012): 929–32. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.929.
Full textValckx, Nick, Daniel Cuypers, Rita Vos, et al. "Study of the Etching Mechanism of Heavily Doped Si in HF." Solid State Phenomena 187 (April 2012): 41–44. http://dx.doi.org/10.4028/www.scientific.net/ssp.187.41.
Full textJia, Hujun, Mengyu Dong, Xiaowei Wang, Shunwei Zhu, and Yintang Yang. "A Novel 4H-SiC MESFET with a Heavily Doped Region, a Lightly Doped Region and an Insulated Region." Micromachines 12, no. 5 (2021): 488. http://dx.doi.org/10.3390/mi12050488.
Full textNaderi, Ali. "Improvement in the performance of graphene nanoribbon p-i-n tunneling field effect transistors by applying lightly doped profile on drain region." International Journal of Modern Physics B 31, no. 31 (2017): 1750248. http://dx.doi.org/10.1142/s0217979217502484.
Full textWu, A., R. D. Schrimpf, H. J. Barnaby, D. M. Fleetwood, R. L. Pease, and S. L. Kosier. "Radiation-induced gain degradation in lateral PNP BJTs with lightly and heavily doped emitters." IEEE Transactions on Nuclear Science 44, no. 6 (1997): 1914–21. http://dx.doi.org/10.1109/23.658962.
Full textAleksandrov, L. N., and P. L. Novikov. "Morphology of porous silicon structures formed by anodization of heavily and lightly doped silicon." Thin Solid Films 330, no. 2 (1998): 102–7. http://dx.doi.org/10.1016/s0040-6090(98)00605-1.
Full textDutta, Pradipta, Binit Syamal, Kalyan Koley, N. Mohankumar, and C. K. Sarkar. "A New Threshold Voltage and Drain Current Model for Lightly/Heavily Doped Surrounding Gate MOSFETs." Journal of Computational and Theoretical Nanoscience 12, no. 9 (2015): 2515–22. http://dx.doi.org/10.1166/jctn.2015.4057.
Full textShenai, K. "Formation and properties of rapid thermally annealed TiSi2 on lightly doped and heavily implanted silicon." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 6, no. 6 (1988): 1728. http://dx.doi.org/10.1116/1.584168.
Full textWang, En-Ge, Li-Yuan Zhang, and Huai-Yu Wang. "Local density of states of silicon impurity in lightly and heavily doped AlAs/GaAs superlattices." Materials Science and Engineering: B 5, no. 3 (1990): 371–75. http://dx.doi.org/10.1016/0921-5107(90)90101-g.
Full textLiang, Fangzhou, Wen Chen, Meixin Feng, et al. "Effect of Si Doping on the Performance of GaN Schottky Barrier Ultraviolet Photodetector Grown on Si Substrate." Photonics 8, no. 2 (2021): 28. http://dx.doi.org/10.3390/photonics8020028.
Full textSatou, A., Y. Koseki, V. Ryzhii, V. Vyurkov, and T. Otsuji. "Damping mechanism of terahertz plasmons in graphene on heavily doped substrate." Journal of Applied Physics 115, no. 10 (2014): 104501. http://dx.doi.org/10.1063/1.4867971.
Full textSzmyd, D. M., and A. Majerfeld. "Substrate‐induced peak in the photoluminescence of heavily doped epitaxial GaAs." Journal of Applied Physics 65, no. 4 (1989): 1788–90. http://dx.doi.org/10.1063/1.342906.
Full textKitano, Tomohisa, Noriyuki Kodama, Tetsuya Sakai, and Shuichi Saito. "Suppression of Titanium Disilicide Formation on Heavily Arsenic-Doped Silicon Substrate." Japanese Journal of Applied Physics 35, Part 1, No. 2A (1996): 591–92. http://dx.doi.org/10.1143/jjap.35.591.
Full textManninen, Antti, Jari Kauranen, Jukka Pekola, et al. "Single Electron Transistor Fabricated on Heavily Doped Silicon-on-Insulator Substrate." Japanese Journal of Applied Physics 40, Part 1, No. 3B (2001): 2013–16. http://dx.doi.org/10.1143/jjap.40.2013.
Full textСлипченко, С. О., А. А. Подоскин, О. С. Соболева та ін. "Исследования процессов транспорта носителей заряда в изотипных гетероструктурах типа n-=SUP=-+-=/SUP=--GaAs/n-=SUP=-0-=/SUP=--GaAs/n-=SUP=-+-=/SUP=--GaAs с тонким широкозонным барьером AlGaAs". Физика и техника полупроводников 54, № 5 (2020): 452. http://dx.doi.org/10.21883/ftp.2020.05.49258.9344.
Full textWang, Yue, Lixin Wang, Yuanzhe Li, Mengyao Cui, and Zhuoxuan Zheng. "A Single-Event Burnout Hardened Super-Junction Trench SOI LDMOS with Additional Hole Leakage Paths." Electronics 11, no. 22 (2022): 3764. http://dx.doi.org/10.3390/electronics11223764.
Full textWang, C. C., V. D. Patton, S. A. Akbar, and M. A. Alim. "Effect of zirconia doping on the electrical behavior of yttria." Journal of Materials Research 11, no. 2 (1996): 422–29. http://dx.doi.org/10.1557/jmr.1996.0051.
Full textТрухин, В. Н., В. А. Соловьев, И. А. Мустафин та М. Ю. Чернов. "Терагерцевая генерация в эпитаксиальных пленках InAs". Письма в журнал технической физики 48, № 3 (2022): 51. http://dx.doi.org/10.21883/pjtf.2022.03.51985.19051.
Full text