Academic literature on the topic 'Lightweight structure concrete'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lightweight structure concrete.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Lightweight structure concrete"

1

Vaičienė, Marija. "Influence of the active additives on the structure and properties of expanded-clay lightweight concrete." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120119_143017-08407.

Full text
Abstract:
Two active mineral additives were selected in the investigation described in the dissertation: unground catalyst from the reactor of catalytic oil cracking (CAT) and unburned mullite wool (MW). The possibilities to utilise these raw materials in the production of the expanded-clay lightweight concrete are not analysed yet. Main topic of the research: influence of the active mineral additives (CAT and MW) on the main characteristics of the expanded-clay lightweight concrete.<br>Disertacijoje aprašytuose tyrimuose buvo pasirinkti du aktyvūs mineraliniai priedai: nemaltas katalizatorius iš katalitinio naftos krekingo reaktoriaus (KAT) ir nedegta mulitinė vata (MV). Galimybės šias atliekas naudoti keramzitbetonio gamyboje iki šiol netirtos. Pagrindinė tyrimo tematika – aktyviųjų mineralinių priedų (KAT ir MV) įtaka pagrindinėms keramzitbetonio charakteristikoms.
APA, Harvard, Vancouver, ISO, and other styles
2

Van, Rooyen Algurnon Steve. "Structural lightweight aerated concrete." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80106.

Full text
Abstract:
Thesis (MScEng)--Stellenbosch University, 2013.<br>Cellular concrete is a type of lightweight concrete that consists only of cement, water and sand with 20 per cent air by volume or more air entrained into the concrete. The two methods used for air entrainment in cellular concrete are (1) the use of an air entraining agent (AEA), and (2) the use of pre-formed foam. If pre-formed foam is used to entrain air into the concrete the concrete is named foamed concrete and if an AEA is used the concrete is termed aerated concrete. Depending on the type of application, structural or nonstructural, cellular concrete can be designed to have a density in the range of range of 400 to 1800 kg/m3. Non-structural applications of cellular concrete include void and trench filling, thermal and acoustic insulation. Structural applications of cellular concrete include pre-cast units such as concrete bricks, partitions, roof slabs etc. Due to the high levels of air in cellular concrete it is challenging to produce compressive strengths that are sufficient to classify the concrete as structurally useful when non-autoclaving curing conditions are used. The autoclaving process combines high temperature and pressure in the forming process, which causes higher strength and reduced shrinkage. This process is also limited to prefabricated units. Non-autoclave curing conditions include moist curing, dry curing, wrapping the concrete in plastic, etc. However, now that the world is moving in an energy efficient direction, ways to exclude energy-intensive autoclaving are sought. It has for instance been found that the utilisation of high volumes of fly-ash in cellular concrete leads to higher strengths which make it possible to classify the concrete as structurally useful. Now, that there is renewed interest in the structural applications of the concrete a design methodology using an arbitrary air entraining agent needs to be found. The research reported in this thesis therefore attempts to find such a methodology and to produce aerated concrete with a given density and strength that can be classified as structurally useful. For the mix design methodology, the following factors are investigated: water demand of the mix, water demand of the mix constituents, and the amount of AEA needed to produce aerated concrete with a certain density. The water demand of the mix depends on the mix constituents and therefore a method is proposed to calculate the water demand of the mix constituents based on the ASTM flow turn table. Due to the complex nature of air entrainment in concrete, the amount of air entrained into the concrete mix is not known beforehand, and a trial and error method therefore had to be developed. The trial mixes were conducted in a small bakery mixer. From the trial mixes estimated dosages of AEA were found and concrete mixes were designed based on these mixes. The factors that influence the mix design and strength of aerated concrete include filler/cement ratio (f/c), fly-ash/cement ratio (a/c) and design target density. Additional factors that influence the strength of aerated concrete are specimen size and shape, curing, and concrete age. It was found that the sand type and f/c ratio influence the water demand of the concrete mix. Sand type and f/c ratio also influence compressive strength, with higher strength for a finer sand type and lower f/c ratios. However, the concrete density is the factor that influences the strength the most.
APA, Harvard, Vancouver, ISO, and other styles
3

Nguyen, Le Hung. "Béton de structure à propriétés d'isolation thermique améliorées : approche expérimentale et modélisation numérique." Phd thesis, Université de Cergy Pontoise, 2013. http://tel.archives-ouvertes.fr/tel-00931711.

Full text
Abstract:
Dans un bâtiment, les déperditions thermiques proviennent de diverses parties opaques (mur, toit et plancher) qui peuvent contenir du béton. Il est donc intéressant d'envisager des formulations de béton de structure avec des propriétés d'isolation thermique améliorées. L'utilisation de granulats légers, qui possèdent de bonnes propriétés thermiques grâce à leur structure poreuse, peut être une solution pour améliorer la capacité d'isolation des éléments en béton. Cette technique d'isolation répartie peut permettre d'éviter des dispositifs constructifs lourds tout en répondant aux exigences de la RT 2012. La présente étude a pour objectif d'optimiser le couple performance mécanique - capacité isolante des bétons de granulats légers. Elle repose sur une double approche expérimentale et numérique.Les bétons de granulats légers ciblés ont une masse volumique inférieure à 1500 kg/m3 et une résistance en compression supérieure à 25 MPa. L'influence de la nature des granulats légers, du taux de substitution du sable alluvionnaire par du sable léger, du rapport E/C et de l'ajout de fumée de silice sur les performances mécaniques et thermiques des bétons est étudiée afin de proposer des formulations adéquates pour une large gamme d'usage structurel. Le module d'Young, la résistance en compression, la conductivité thermique et la diffusivité sont mesurées sur 25 formulations de bétons de granulats légers. Le comportement thermique de ces différents bétons en fonction de facteurs climatiques, comme la température et le degré d'humidité est aussi examiné afin d'optimiser leurs propriétés d'isolation thermique. L'ensemble des résultats expérimentaux permet une meilleure compréhension de la relation entre la formulation des bétons de granulats légers et leur rapport performance mécanique / pouvoir isolant. En s'appuyant sur certaines mesures expérimentales, des modélisations numériques reposant sur des techniques d'homogénéisation permettent d'identifier des propriétés thermiques (conductivité thermique, chaleur spécifique) et mécaniques (module d'Young, résistance à la rupture) des granulats légers (gravillons et sables) difficilement mesurables expérimentalement. Connaissant les propriétés thermiques et mécaniques des différents constituants, des modélisations prédictives des comportements macroscopiques des bétons légers sont développées à partir de schémas d'homogénéisation pour des matériaux multi-phases polydisperses. Les outils développés sont comparés et validés par confrontation aux mesures expérimentales pour les différentes familles de bétons de granulats légers étudiés. Ils permettront par la suite d'alléger les coûts et délais des campagnes expérimentales de mise au point des formulations. La modélisation, sur une année, des transferts thermiques à travers une enveloppe de bâtiment en béton de granulats légers permet de quantifier l'amélioration des performances thermiques des bétons de granulats légers par rapport à un béton classique.
APA, Harvard, Vancouver, ISO, and other styles
4

Assunção, José Wilson. "Concreto Leve Autoadensável: avaliação da influência da argila expandida no processo de dosagem e nas propriedades do concreto." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/102/102131/tde-01072016-115653/.

Full text
Abstract:
Esta tese aborda as influências do agregado leve na dosagem, características físicas e mecânicas de concreto autoadensável (CAA) quando na fração de graúdo da mistura, substitui-se parte do volume absoluto da brita de basalto (máx 19 mm) pelo volume equivalente de argila expandida brasileira (máx 12,7 mm). O fato de conhecer as implicações na reologia do CAA, provocadas pelo uso conjunto de agregados com características físicas distintas e, apresentar este tipo de concreto como uma alternativa promissora para uso na indústria da pré-fabricação em concreto, justificam esta pesquisa. A substituição da brita de basalto pela argila expandida (AE-1506), em teores de volume absoluto, foi de 20%, 40%, 60%, 80% e 100%. Como resultados, produziram-se concretos autoadensáveis com consumo de aglomerantes (cimento Portland CP V-ARI e sílica ativa) da ordem de 510 kg/m³, que atenderam aos limites de autoadensabilidade propostos pela norma NBR 15823-1 (2010). Na condição endurecida, apresentaram massa específica seca de 2.358,3 a 1.720,7 kg/m³, resistência à compressão (fc28) de 60 a 43 MPa, módulo de elasticidade (Esc) de 23 a 34 GPa e eficiência estrutural (FEE) de 22 a 29 MPa.dm³.kg-1, sem sinais visíveis de frente de carbonatação. Obteve-se concreto leve autoadensável (CLAA) a partir de misturas com fração de graúdo foi composta por 60% de argila expandida e 40% de brita de basalto, que atingiram massa específica seca de 1.986 kg/m³, resistência a compressão (fc28) de 51,3 MPa e condutividade térmica () de 1,07 a 1,53 W/m.K. Constatou-se que a argila expandida interfere significativamente nas características dos concretos exigindo, na comparação com CAA confeccionado com 100% de brita de basalto, maior teor de argamassa e relação volume de água/volume de finos mais elevado.<br>This thesis discusses aspects related to the influence of lightweight aggregate in the mix design, physical and mechanical properties of the self-compacting concrete (SCC) when replacing part of the absolute volume of basalt crushed stone (máx19 mm) with a lightweight aggregate equivalent absolute volume Brazilian expanded clay (máx 12,7 mm). Understanding interference on the rheology of the SCC caused by the use of aggregates with different physical properties and recommend this type of concrete as a promising alternative for the pre-fabricated concrete industry, justify this research. The replacement of basalt crushed stone for lightweight aggregate (AE-1506), in equivalent absolute volume, was 20%, 40%, 60%, 80% and 100%. As a result, self-compacting concrete was produced with consumption of binders (cement Portland CP V-ARI and silica fume) of about 510 kg / m³, appropriate for self- compactibility limits established by the ABNT NBR 15823-1 (2010) standard. In the hardened condition, the dry density value ranged from 2.358,3 to 1.720,7 kg/m³, compressive strength (fc28) ranged from 60 to 43 MPa, elasticity modulus (Esc) ranged from 23 to 34 GPa, and efficiency structural (FES) ranged from 22 to 29 MPa.dm³.kg-1, with no visible signs of carbonation. The self-compacting lightweight expanded clay concrete (SCLC) was obtained from mixtures which its absolute volume fraction of aggregate coarse was composed by 60% of expanded clay and 40% of basalt crushed stone, with dry density of 1986 kg/m³, compressive strength (fc28) of 51.3 MPa and thermal conductivity () varied from 1,07 to 1,53 W/m.K. It was found that the expanded clay significantly interferes in the properties of concretes demanding in comparison with SCC made with 100% basalt crushed stone, mortar content and ratio higher volume of water/volume of higher fines.
APA, Harvard, Vancouver, ISO, and other styles
5

Arasteh, A. R. "Structural applications of lightweight aggregate foamed concrete." Thesis, University of Westminster, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aly, Atif M. A. H. "Effect of confinement on structural behaviour of axially loaded lightweight concrete columns." Thesis, University of Sheffield, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Novotná, Aneta. "Možnosti využití rozptýlené výztuže pro lehké konstrukční betony." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226093.

Full text
Abstract:
Master´s thesis deals with some problems associated with utilisation of lightweight concrete from the porous aggregates in the load – carrying structures. The thesis focuses on the possibilities of the increase of the cement composites toughness using dispersed reinforcement. Lightweight concretes were reinforced with a combination of different lengths of polypropylene fibers Forta Ferro. There were used polypropylene fibers of three lengths 19, 38, 54 mm. The thesis is divided into theoretical, experimental and static part.
APA, Harvard, Vancouver, ISO, and other styles
8

Asik, Mesut. "Structural Lightweight Concrete With Natural Perlite Aggregate And Perlite Powder." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607728/index.pdf.

Full text
Abstract:
Structural lightweight aggregate concrete is an important and versatile material, which offers a range of technical, economic and environmental-enhancing and preserving advantages and is designed to become a dominant material in the new millennium. For structural application of lightweight concrete, the density is often more important than the strength. A decreased density for the same strength level reduces the self-weight, foundation size and construction costs. Structural lightweight aggregate concrete generally used to reduce dead weight of structure as well as to reduce the risk of earthquake damages to a structure because the earthquake forces that will influence the civil engineering structures are proportional to the mass of those structures. In this study, structural lightweight aggregate concrete was designed with the use of natural perlite aggregate that will provide an advantage of reducing dead weight of structure and to obtain a more economical structural lightweight concrete by the use of perlite powder as a replacement of the cement. Six mixes were produced with different cement content and with or without perlite powder. Six mixes divided into two groups according to their cement content. First group had a cement content of 300 kg/m3 and second group had cement content of 500 kg/m3<br>also the water/cement ratios of groups were 0.49 and 0.35 respectively. Moreover, each group had three sub-mixes with 0%, 20% and 35% of perlite powder as cement replacement. According to results of experimental study, it was concluded that natural perlite aggregate can be used in the production of structural lightweight aggregate concrete. Based on the strength and density results of experimental work, it is possible to produce lightweight concrete with 20 MPa-40 MPa cylindrical compressive strength by using natural perlite aggregate. Also, the use of perlite powder, which will provide economy, can reduce dead weight further and increase performance.
APA, Harvard, Vancouver, ISO, and other styles
9

Cross, Benjamin Thomas. "Structural Performance of High Strength Lightweight Concrete Pretensioned Bridge Girders." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/26190.

Full text
Abstract:
The use of high compressive strengths in prestressed bridge girders can lower costs by allowing for longer spans, increased girder spacing, and smaller cross-sections. If high strength lightweight concrete (HSLWC) is used, these advantages are further enhanced due to the corresponding reduction in self-weight. Additional benefits can then be realized in the form of more traffic lanes, increased load capacity, smaller substructures, reduced crane capacity requirements, and lower shipping costs. Despite the possible economic savings, HSLWC has been used infrequently in prestressed bridge girder applications across the nation. While recent research has been performed to extend the applicability of current bridge design specifications to normal weight concretes with strengths as high as 18 ksi, little has been done by comparison with regards to HSLWC. The purpose of the research in this report was to assess whether current bridge design specifications for transfer length, development length, prestress loss, camber, and flexural capacity are satisfactory for use with fully-bonded, pretensioned flexural members consisting of HSLWC and to make recommendations for improvements where necessary. Twelve high strength pretensioned beams of variable unit weight (eight lightweight beams and four normal weight beams) and strand size (eight beams with 0.5-in. strand and four beams with 0.6-in. strand) were cast at the Thomas M. Murray Structural Engineering Laboratory at Virginia Tech. These beams were allowed to sit for a period of several months after fabrication while measurements were taken regarding transfer length, prestress loss, and camber. After this period, the beams were load tested to collect development length data, flexural data, and further data related to prestress loss. In addition to the laboratory cast beams, prestress loss and camber data from six full-size bridge beams (five lightweight beams and one normal weight beam) cast as part of a separate project at Virginia Tech was examined. Analysis of the results for all beams shows that with a few caveats, the current AASHTO LRFD Specifications and other design methods examined regarding the topics under consideration are satisfactory for use in the design of HSLWC pretensioned bridge girders with properties similar to those of the beams studied.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

El, Zareef Mohamed [Verfasser]. "Conceptual and Structural Design of Buildings made of Lightweight and Infra-Lightweight Concrete / Mohamed El Zareef." Aachen : Shaker, 2010. http://d-nb.info/1120864259/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography