Academic literature on the topic 'Lignocellulose'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lignocellulose.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lignocellulose"
Saini, Anita, Neeraj K. Aggarwal, Anuja Sharma, and Anita Yadav. "Actinomycetes: A Source of Lignocellulolytic Enzymes." Enzyme Research 2015 (December 17, 2015): 1–15. http://dx.doi.org/10.1155/2015/279381.
Full textOjo, Abidemi. "An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production." Fermentation 9, no. 11 (November 20, 2023): 990. http://dx.doi.org/10.3390/fermentation9110990.
Full textLi, Tuo, Jinding Liu, Qin Wang, Yang Liu, Ting Li, Dongyang Liu, and Qirong Shen. "Tr-milRNA1 Contributes to Lignocellulase Secretion under Heat Stress by Regulating the Lectin-Type Cargo Receptor Gene Trvip36 in Trichoderma guizhouence NJAU 4742." Journal of Fungi 7, no. 12 (November 23, 2021): 997. http://dx.doi.org/10.3390/jof7120997.
Full textSiddique, Mohammad, Ali Nawaz Mengal, Suleman khan, Luqman Ali khan, and Ehsanullah khan Kakar. "Pretreatment of lignocellulosic biomass conversion into biofuel and biochemical: a comprehensive review." MOJ Biology and Medicine 8, no. 1 (March 21, 2023): 39–43. http://dx.doi.org/10.15406/mojbm.2023.08.00181.
Full textMalgas, Samkelo, and Brett I. Pletschke. "Combination of CTec2 and GH5 or GH26 Endo-Mannanases for Effective Lignocellulosic Biomass Degradation." Catalysts 10, no. 10 (October 16, 2020): 1193. http://dx.doi.org/10.3390/catal10101193.
Full textSaini, Anita, Neeraj K. Aggarwal, Anuja Sharma, and Anita Yadav. "Prospects for Irradiation in Cellulosic Ethanol Production." Biotechnology Research International 2015 (December 29, 2015): 1–13. http://dx.doi.org/10.1155/2015/157139.
Full textSadhukhan, Jhuma, Bruno G. Pollet, and Miles Seaman. "Hydrogen Production and Storage: Analysing Integration of Photoelectrolysis, Electron Harvesting Lignocellulose, and Atmospheric Carbon Dioxide-Fixing Biosynthesis." Energies 15, no. 15 (July 28, 2022): 5486. http://dx.doi.org/10.3390/en15155486.
Full textHu, Mingyang, Junyou Chen, Yanyan Yu, and Yun Liu. "Peroxyacetic Acid Pretreatment: A Potentially Promising Strategy towards Lignocellulose Biorefinery." Molecules 27, no. 19 (September 26, 2022): 6359. http://dx.doi.org/10.3390/molecules27196359.
Full textUtomo, Suryadi Budi, Muhammad Ivan Fadillah, and Rika Yulianti. "Profile of the Adsorption Ability of Sulfonate-Modified Lignocellulose Based on Bagasse Waste to Some Batik Textile Dyes." Key Engineering Materials 963 (October 13, 2023): 61–70. http://dx.doi.org/10.4028/p-b9ukxd.
Full textHeeger, Felix, Elizabeth C. Bourne, Christian Wurzbacher, Elisabeth Funke, Anna Lipzen, Guifen He, Vivian Ng, Igor V. Grigoriev, Dietmar Schlosser, and Michael T. Monaghan. "Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis aquatica." Journal of Fungi 7, no. 10 (October 12, 2021): 854. http://dx.doi.org/10.3390/jof7100854.
Full textDissertations / Theses on the topic "Lignocellulose"
Warsame, Mohamed. "Saccharification of lignocellulose." Thesis, Malmö högskola, Fakulteten för hälsa och samhälle (HS), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-25910.
Full textThe increasing energy demand and the anticipated decline in crude oil production has led to an immense search for new energy sources. Plant cell walls contain lignocellulose that conserve great amounts of energy. These polysaccharides are of high importance for the search of renewable energy sources. Pretreatment of the cell wall is necessary in order to hydrolyse it to its component sugars. Once degraded to monomeric sugars it can be fermented to either ethanol or biogas through established fermentation technologies.The aim of this thesis was to compare and evaluate some of the methods used for sacchrification of lignocellulose. Three treatments where compared to determine which is highest yielding. These are enzymatic hydrolysis, microwave irradiation and steam explosion.Wheat straw was used as substrate and hydrolysed by three commercial enzyme mixtures. Samples were pretreated before the enzymatic reaction with either microwave or steam explosion. Results showed that a treatment of either microwave irradiation or steam explosion combined with enzyme hydrolysis gives the highest yield in monomeric sugars. The conclusions that can be drawn are that mechanical pretreatment increases yield drastically but is insufficient in its self. Further enzymatic treatment of wheat straw is necessary to obtain high amounts of simple sugars.
Garcia, Susana. "Biodégradation des lignocelluloses : étude microbiologique, physiologique et ultrastructurale." Paris 7, 1988. http://www.theses.fr/1988PA077057.
Full textKeränen, A. (Anni). "Water treatment by quaternized lignocellulose." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526215143.
Full textTiivistelmä Edullisia ja kestäviä vedenkäsittelytekniikoita tarvitaan kasvavien vesiongelmien ratkaisemiseen. Lignoselluloosaa, kuten sahanpurua, syntyy suuria määriä teollisuuden sivutuotteena. Sen reaktiivisia funktionaalisia ryhmiä voidaan modifioida kemiallisesti ja valmistaa siten biopohjaisia vedenkäsittelykemikaaleja. Tutkimustietoa oikeiden jätevesien puhdistuksesta biopohjaisilla ioninvaihtomateriaaleilla tarvitaan lisää, jotta materiaalien käyttöä voidaan kehittää ja edistää. Tässä väitöstyössä valmistettiin anioninvaihtomateriaaleja modifioimalla kemiallisesti viittä suomalaista lignoselluloosamateriaalia: männyn sahanpurua ja kuorta (Pinus sylvestris), kuusen kuorta (Picea abies), koivun kuorta (Betula pendula/pubescens) ja turvetta. Menetelmässä käytettiin epikloorihydriiniä, etyleenidiamiinia ja trietyyliamiinia orgaanisessa liuotinfaasissa. Työssä keskityttiin erityisesti nitraatin poistoon sekä synteettisistä että oikeista jätevesistä. Materiaalien soveltuvuutta teollisiin sovelluksiin arvioitiin maksimisorptiokapasiteetin, sorptioisotermien, kinetiikka- ja kolonnikokeiden sekä pH:n, lämpötilan ja muiden anionien vaikutusta tutkivien kokeiden avulla. Kaikki viisi kationisoitua tuotetta poistivat yli 70 % nitraatista laajalla pH-alueella (3–10). Kationisoitu männyn sahanpuru osoittautui parhaaksi materiaaliksi (32,8 mg NO3-N/g), ja se toimi laajalla lämpötila-alueella (5–70°C). Kolonnikokeet osoittivat sen olevan helposti regeneroitavissa ja uudelleenkäytettävissä. Tuotetta testattiin myös kaivos- ja kemiantehtaan jäteveden käsittelyyn, ja kokeissa havaittiin hyviä nikkeli-, uraani-, vanadiini- ja kobolttireduktioita. Männyn sahanpurua modifioitiin vertailun vuoksi myös kationisella monomeerilla, N-(3-kloro-2-hydroksipropyyli)trimetyyliammoniumkloridilla. Tuotteen maksimisorptiokapasiteetiksi saatiin 15,3 mg NO3-N/g ja se poisti nitraattia saastuneesta pohjavedestä. Kokonaisuudessaan väitöskirjatyö tarjoaa uutta tietoa biopohjaisten ioninvaihtomateriaalien valmistamisesta ja niiden soveltuvuudesta oikeiden teollisuusjätevesien käsittelyyn
Van, Dyk Jacoba Susanna. "Characterisation of the cellulolytic and hemicellulolytic system of Bacillus Licheniformis SVD1 and the isolation and characterisation of a multi-enzyme complex." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1003995.
Full textQin, Wenjuan. "High consistency enzymatic hydrolysis of lignocellulose." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/24374.
Full textBi, Ran. "Lignocellulose Degradation by Soil Micro-organisms." Doctoral thesis, KTH, Träkemi och massateknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182336.
Full textQC 20160223
Mamphogoro, Tshifhiwa Paris. "Laccases from actinomycetes for lignocellulose degradation." Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/3945.
Full textThe purpose of this study shows that lignocellulose has a complex structure composed mainly of lignin, hemicellulose and cellulose. Several enzymes are needed for the degradation of lignocellulose into simple sugars. Actinomycetes are known to produce laccases which are able to degrade lignin. Laccase activities were detected in actinomycete strains MS26 isolated from soil collected from the Zambian Copperbelt and DFNR17 isolated from soil collected from a New Zealand farm. Morphological studies showed that the strains produced extensively branched substrate mycelia and aerial hyphae. Micromorphological characteristics were consistent with the assignment of these strains to the genus Streptomyces. Isolates were found to be mesophiles, with growth occurring in a temperature range of 16 and 45°C. Optimal growth occurred at temperatures between 30 and 37oC. Analysis of the 16S rRNA gene sequences of the strains showed that strain MS26 had the highest sequence similarity (99%) to Streptomyces atrovirens strain NRRL B-16357 and Streptomyces viridodiastaticus strain IFO 13106. Strain DFNR17 had the highest 16S rRNA gene sequence similarity (99%) to Streptomyces althioticus strain KCTC 9752. The strains shared several physiological and biochemical characteristics with their closest neighbours which, along with 16S rRNA gene sequences analysis, confirmed that the strains were members of the genus Streptomyces. Attempts to identify the laccase genes from these isolates by screening a fosmid library failed. Subsequently isolates were screened by PCR using laccase-like cooper oxidase degenerate primers designed from several Streptomyces strains. A 300 bp amplicon was obtained from both isolates. Phylogenetic analysis was performed and both amplicons from strains MS26 and DFNR17 had the highest similarities with the copper oxidase gene from Streptomyces griseoflavus strain Tu4000. Therefore it is probable that the laccase activity observed for these strains is due to the activity of copper oxidase gene product
Moxley, Geoffrey W. "Studies of Cellulosic Ethanol Production from Lignocellulose." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/43372.
Full textLignocellulose materials are structurally composed of five types of polymeric sugars, glucan, galactan, mannan, arabinan, and xylan. NREL has developed a quantitative saccharification (QS) method for determining carbohydrate composition. We proposed a new protocol based on the NREL 2006 Laboratory Analytical Procedure â Determination of Structural Carbohydrates and Lignin in Biomassâ (Sluiter et al. 2006a) with a slight modification, in which xylose concentration was determined after the secondary hydrolysis by using 1% sulfuric acid rather than 4% sulfuric acid. We found that the current NREL protocol led to a statistically significant overestimation of acid-labile xylan content ranging from 4 to 8 percent.
Lignocellulosic biomass is naturally recalcitrant to enzymatic hydrolysis, and must be pretreated before it can be effectively used for bioethanol production. One such pretreatment is a fractionation process that separates lignin and hemicellulose from the cellulose and converts crystalline cellulose microfibrils to amorphous cellulose. Here we evaluated the feasibility of lignocellulose fractionation applicable to the hurds of industrial hemp. Hurds are the remaining material of the stalk after all leaves, seeds, and fiber have been stripped from the plant. After optimizing acid concentration, reaction time and temperature, the pretreated cellulosic samples were hydrolyzed to more than 96% after 24 hours of hydrolysis (enzyme loading conditions of 15 FPU/g glucan Spezyme CP and 60 IU/g glucan Novozyme 188) at the optimal pretreatment condition (> 84% H3PO4, > 50 °C and > 1 hour). The overall glucose and xylose yields were 89% (94% pretreatment; 96% digestibility) and 61%, respectively. All data suggest the technical feasibility of building a biorefinery based on the hurds of industrial hemp as a feedstock and a new lignocellulose fractionation technology for producing cellulosic ethanol. The choice of feedstock and processing technology gives high sugar yields, low processing costs, low cost feedstock, and low capital investment.
Master of Science
Clarke, Anna Maria. "The microbial ecology of sulphidogenic lignocellulose degradation." Thesis, Rhodes University, 2007. http://hdl.handle.net/10962/d1008181.
Full texticardi, sara. "Lignocellulose degradation: a proteomic and metagenomic study." Doctoral thesis, Università del Piemonte Orientale, 2018. http://hdl.handle.net/11579/97185.
Full textBooks on the topic "Lignocellulose"
Faraco, Vincenza, ed. Lignocellulose Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4.
Full textSaha, Badal C., and Kyoshi Hayashi, eds. Lignocellulose Biodegradation. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0889.
Full text1949-, Saha Badal C., Hayashi Kyoshi 1952-, American Chemical Society. Cellulose and Renewable Materials Division, and American Chemical Society Meeting, eds. Lignocellulose biodegradation. Washington, DC: American Chemical Society, 2004.
Find full textKarimi, Keikhosro, ed. Lignocellulose-Based Bioproducts. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14033-9.
Full textChen, Hongzhang. Biotechnology of Lignocellulose. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6898-7.
Full textChander, Kuhad Ramesh, and Singh Ajay 1963-, eds. Lignocellulose biotechnology: Future prospects. Tunbridge Wells: Anshan, 2007.
Find full textP, Coughlan Michael, ed. Enzyme systems for lignocellulose degradation. London: Elsevier, 1989.
Find full textSmith, Micholas Dean, ed. Understanding Lignocellulose: Synergistic Computational and Analytic Methods. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1338.
Full textEuropean, Workshop on Lignocellulosics and Pulp (1st 1990 Bergedorf (Hamburg Germany). Utilization and analysis of lignins: 1st European Workshop on Lignocellulosics and Pulp (EWLP) : Hamburg-Bergedorf, Federal Republic of Germany, September 18-20, 1990 : proceedings. Hamburg: Buchhandlung M. Wiedebusch, 1991.
Find full textPalonen, Hetti. Role of lignin in the enzymatic hydrolysis of lignocellulose. Espoo [Finland]: VTT Technical Research Centre of Finland, 2004.
Find full textBook chapters on the topic "Lignocellulose"
Watanabe, Takashi. "Introduction: Potential of Cellulosic Ethanol." In Lignocellulose Conversion, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_1.
Full textHadar, Yitzhak. "Sources for Lignocellulosic Raw Materials for the Production of Ethanol." In Lignocellulose Conversion, 21–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_2.
Full textWoiciechowski, Adenise Lorenci, Luciana Porto de Souza Vandenberghe, Susan Grace Karp, Luiz Alberto Junior Letti, Júlio Cesar de Carvalho, Adriane Bianchi Pedroni Medeiros, Michele Rigon Spier, Vincenza Faraco, Vanete Thomaz Soccol, and Carlos Ricardo Soccol. "The Pretreatment Step in Lignocellulosic Biomass Conversion: Current Systems and New Biological Systems." In Lignocellulose Conversion, 39–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_3.
Full textBalan, Venkatesh, Mingjie Jin, Alan Culbertson, and Nirmal Uppugundla. "The Saccharification Step: Trichoderma Reesei Cellulase Hyper Producer Strains." In Lignocellulose Conversion, 65–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_4.
Full textCouturier, Marie, and Jean-Guy Berrin. "The Saccharification Step: The Main Enzymatic Components." In Lignocellulose Conversion, 93–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_5.
Full textCobucci-Ponzano, Beatrice, Elena Ionata, Francesco La Cara, Alessandra Morana, Maria Carmina Ferrara, Luisa Maurelli, Andrea Strazzulli, Rosa Giglio, and Marco Moracci. "Extremophilic (Hemi)cellulolytic Microorganisms and Enzymes." In Lignocellulose Conversion, 111–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_6.
Full textBinod, Parameswaran, Raveendran Sindhu, and Ashok Pandey. "The Alcohol Fermentation Step: The Most Common Ethanologenic Microorganisms Among Yeasts, Bacteria and Filamentous Fungi." In Lignocellulose Conversion, 131–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_7.
Full textCastro, Eulogio. "Other Ethanologenic Microorganisms." In Lignocellulose Conversion, 151–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_8.
Full textAmore, Antonella, Simona Giacobbe, and Vincenza Faraco. "Consolidated Bioprocessing for Improving Cellulosic Ethanol Production." In Lignocellulose Conversion, 169–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_9.
Full textAkin, Danny E. "Grass Lignocellulose." In Applied Biochemistry and Biotecnology, 3–15. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-60327-181-3_2.
Full textConference papers on the topic "Lignocellulose"
Zhu, Kuihong, Tong Liu, Jia Liu, Xu Cao, Jiaojiao Liu, and Jie Wang. "Microbial degradation of lignocellulose." In 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF BIOLOGICAL SCIENCES AND ENGINEERING (FBSE 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0048528.
Full text"Comparison of crystallinity index computational methods based on lignocellulose X-ray diffractogram." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-16.
Full textMeurs, Marie-Jean, Caitlin Murphy, Ingo Morgenstern, Nona Naderi, Greg Butler, Justin Powlowski, Adrian Tsang, and René Witte. "Semantic text mining for lignocellulose research." In the ACM fifth international workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2064696.2064705.
Full textYuliar, Nursaida Setiyowati, Sri Pujiyanto, and Wijanarka. "Isolation of Brevibacillus sp. B1 from fig stems against post-harvest chilli fungal disease." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184356.
Full textRuhimat, Riki, Tirta Kumala Dewi, Tiwit Widowati, Rahayu Fitriani Wangsa Putrie, Nani Mulyani, Entis Sutisna, and Sarjiya Antonius. "Fungal producing lignolytic and cellulolytic enzyme from the various habitat of natural forest in East Kalimantan." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184758.
Full textTogatorop, Ester Rimma Suryani, Ria Yolanda Arundina, Prabu Satria Sejati, Sukma Surya Kusumah, and Resti Marlina. "Proximate and structural analysis of activated carbon with different structures from oil palm biomass." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184530.
Full textRestasari, Afni, Yeyen Nurhamiyah, Retno Ardianingsih, Luthfia Hajar Abdillah, and Kendra Hartaya. "Preliminary study of effect of palm oil as secondary plasticizer on flow behavior of hydroxyl terminated polybutadiene (HTPB)." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184713.
Full textSaputra, Suroto Hadi, Andrian Fernandes, and Rizki Maharani. "Effect of combustion method on the yield, specific gravity, and color of oleoresin of Dipterocarpus grandiflorus." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184803.
Full textSubyakto, Eko Widodo, Triyati, Naomi Dameria Lidya Andini Hutauruk, Rabiah Al Adawiyah, and Kenji Umemura. "Properties of moulding products from sorghum bagasse combined with alang-alang leaves, sengon wood or bamboo using citric acid-sucrose." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184618.
Full textChitraningrum, Nidya, Resti Marlina, Sutistyaningsih, Hana Arisesa, Ismail Budiman, Pamungkas Daud, Ardita Septiani, Ria Yolanda Arundina, and Ester Rimma Suryani Togatorop. "Preparation and characterization of porous carbon-based oil palm empty fruit bunch as a candidate material for an electromagnetic waves absorber application." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184349.
Full textReports on the topic "Lignocellulose"
O'Malley, Michelle Ann. Engineering Anaerobic Gut Fungi for Lignocellulose Breakdown. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1485149.
Full textHancock, William, Charles Anderson, and Ming Tien. Single-molecule imaging of lignocellulose deconstruction by SCATTIRSTORM microscopy. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2335452.
Full textTorok, Tamas. Targeted Discovery of Lignocellulose-Deconstructing Enzymes from Extremohilic Fungi. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1462736.
Full textDixon, Richard A. Systematic Modification of Monolignol Pathway Gene Expression for Improved Lignocellulose Utilization. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/985404.
Full textMurton, Jaclyn K., James Bryce Ricken, and Amy Jo Powell. Efficient breakdown of lignocellulose using mixed-microbe populations for bioethanol production. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/974402.
Full textHammel, Kenneth E., John Ralph, Christopher G. Hunt, and Carl J. Houtman. Fungal Biodegradative Oxidants in Lignocellulose: Fluorescence Mapping and Correlation With Gene Expression. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1319808.
Full textZerbe, John, and David Nicholls. Lignocellulose to transportation fuels—historical perspectives and status of worldwide facilities in 2010–2011. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2013. http://dx.doi.org/10.2737/pnw-gtr-885.
Full textSLACK, JEFFREY, M. IDENTIFICATION, PRODUCTION AND CHARACTERIZATION OF NOVEL LIGNASE PROTEINS FROM TERMITES FOR DEPOLYMERIZATION OF LIGNOCELLULOSE. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1056676.
Full textHerring, Christopher D., William R. Kenealy, A. Joe Shaw, Babu Raman, Timothy J. Tschaplinski, Steven D. Brown, Brian H. Davison, et al. Final Report on Development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1033560.
Full textDantas, Gautam. Systems Engineering of Rhodococcus opacus to Enable Production of Drop‐in Fuels from Lignocellulose. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1894624.
Full text