Academic literature on the topic 'Lignocellulose'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lignocellulose.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lignocellulose"

1

Saini, Anita, Neeraj K. Aggarwal, Anuja Sharma, and Anita Yadav. "Actinomycetes: A Source of Lignocellulolytic Enzymes." Enzyme Research 2015 (December 17, 2015): 1–15. http://dx.doi.org/10.1155/2015/279381.

Full text
Abstract:
Lignocellulose is the most abundant biomass on earth. Agricultural, forest, and agroindustrial activities generate tons of lignocellulosic wastes annually, which present readily procurable, economically affordable, and renewable feedstock for various lignocelluloses based applications. Lignocelluloses are the focus of present decade researchers globally, in an attempt to develop technologies based on natural biomass for reducing dependence on expensive and exhaustible substrates. Lignocellulolytic enzymes, that is, cellulases, hemicellulases, and lignolytic enzymes, play very important role in the processing of lignocelluloses which is prerequisite for their utilization in various processes. These enzymes are obtained from microorganisms distributed in both prokaryotic and eukaryotic domains including bacteria, fungi, and actinomycetes. Actinomycetes are an attractive microbial group for production of lignocellulose degrading enzymes. Various studies have evaluated the lignocellulose degrading ability of actinomycetes, which can be potentially implemented in the production of different value added products. This paper is an overview of the diversity of cellulolytic, hemicellulolytic, and lignolytic actinomycetes along with brief discussion of their hydrolytic enzyme systems involved in biomass modification.
APA, Harvard, Vancouver, ISO, and other styles
2

Ojo, Abidemi. "An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production." Fermentation 9, no. 11 (November 20, 2023): 990. http://dx.doi.org/10.3390/fermentation9110990.

Full text
Abstract:
Lignocellulose consists of cellulose, hemicellulose, and lignin and is a sustainable feedstock for a biorefinery to generate marketable biomaterials like biofuels and platform chemicals. Enormous tons of lignocellulose are obtained from agricultural waste, but a few tons are utilized due to a lack of awareness of the biotechnological importance of lignocellulose. Underutilizing lignocellulose could also be linked to the incomplete use of cellulose and hemicellulose in biotransformation into new products. Utilizing lignocellulose in producing value-added products alleviates agricultural waste disposal management challenges. It also reduces the emission of toxic substances into the environment, which promotes a sustainable development goal and contributes to circular economy development and economic growth. This review broadly focused on lignocellulose in the production of high-value products. The aspects that were discussed included: (i) sources of lignocellulosic biomass; (ii) conversion of lignocellulosic biomass into value-added products; and (iii) various bio-based products obtained from lignocellulose. Additionally, several challenges in upcycling lignocellulose and alleviation strategies were discussed. This review also suggested prospects using lignocellulose to replace polystyrene packaging with lignin-based packaging products, the production of crafts and interior decorations using lignin, nanolignin in producing environmental biosensors and biomimetic sensors, and processing cellulose and hemicellulose with the addition of nutritional supplements to meet dietary requirements in animal feeding.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Tuo, Jinding Liu, Qin Wang, Yang Liu, Ting Li, Dongyang Liu, and Qirong Shen. "Tr-milRNA1 Contributes to Lignocellulase Secretion under Heat Stress by Regulating the Lectin-Type Cargo Receptor Gene Trvip36 in Trichoderma guizhouence NJAU 4742." Journal of Fungi 7, no. 12 (November 23, 2021): 997. http://dx.doi.org/10.3390/jof7120997.

Full text
Abstract:
Background: MicroRNA plays an important role in multifarious biological processes by regulating their corresponding target genes. However, the biological function and regulatory mechanism of fungal microRNA-like RNAs (milRNAs) remain poorly understood. Methods: In this study, combined with deep sequencing and bioinformatics analysis, milRNAs and their targets from Trichoderma guizhouence NJAU 4742 were isolated and identified under solid-state fermentation (SSF) by using rice straw as the sole carbon source at 28 °C and 37 °C, respectively. Results: A critical milRNA, TGA1_S04_31828 (Tr-milRNA1), was highly expressed under heat stress (37 °C) and adaptively regulated lignocellulase secretion. Overexpression of Tr-milRNA1 (OE-Tr-milRNA1) did not affect vegetative growth, but significantly increased lignocellulose utilization under heat stress. Based on the bioinformatics analysis and qPCR validation, a target of Tr-milRNA1 was identified as Trvip36, a lectin-type cargo receptor. The expression of Tr-milRNA1 and Trvip36 showed a divergent trend under SSF when the temperature was increased from 28 °C to 37 °C. In addition, the expression of Trvip36 was suppressed significantly in Tr-milRNA1 overexpression strain (OE-Tr-milRNA1). Compared with the wild type, deletion of Trvip36 (ΔTrvip36) significantly improved the secretion of lignocellulases by reducing the retention of lignocellulases in the ER under heat stress. Conclusions: Tr-milRNA1 from NJAU 4742 improved lignocellulose utilization under heat stress by regulating the expression of the corresponding target gene Trvip36. These findings might open avenues for exploring the mechanism of lignocellulase secretion in filamentous fungi.
APA, Harvard, Vancouver, ISO, and other styles
4

Siddique, Mohammad, Ali Nawaz Mengal, Suleman khan, Luqman Ali khan, and Ehsanullah khan Kakar. "Pretreatment of lignocellulosic biomass conversion into biofuel and biochemical: a comprehensive review." MOJ Biology and Medicine 8, no. 1 (March 21, 2023): 39–43. http://dx.doi.org/10.15406/mojbm.2023.08.00181.

Full text
Abstract:
The most potential feedstock for industrial civilizations is lignin derived from biomass. The most prevalent aromatic polymer on earth and one of the most difficult materials for commercial application is lignin. Reducing sugars, which can be used to make biofuels and some other products, are among the many chemicals that lignocellulose biomass releases during pretreatment. Lignocellulosic material (LCMS) is a material that is easily accessible, renewable, recyclable, and plentiful. Sustainability has gained traction as a result of climate change and environmental harm. The need for a flexible strategy to meet rising global energy demands has led many academics to concentrate on renewable biofuel made from sustainable sources. Construction of industrial biorefineries using lignocellulose feedstock for biofuel production and other bioproducts. The effective and scalable valorization of lignin is one of the main issues. Its presence prevents the biochemical conversion of lignocelluloses into fuels and chemicals, which depends on the extraction of cellulose and hemicellulose. To produce sustainable energy, lignocellulosic biomass must undergo pretreatment to speed up fragmentation and reduce lignin content. Temperature, time, particle size, and solid loading are the controlling factors for lignin extraction. This study covers the working conditions, parameters, yield percentages, techno-economic evaluations, challenges, and recommended next steps for the direct conversion of biomass to hydrogen. It detailed how green pre-treatment techniques can be used to produce green biofuels, and prospects for the application of green pre-treatment technologies on an industrial scale are also provided. The sustainable lignocellulose biorefinery has a path forward thanks to effective lignin recovery and valorization techniques.
APA, Harvard, Vancouver, ISO, and other styles
5

Malgas, Samkelo, and Brett I. Pletschke. "Combination of CTec2 and GH5 or GH26 Endo-Mannanases for Effective Lignocellulosic Biomass Degradation." Catalysts 10, no. 10 (October 16, 2020): 1193. http://dx.doi.org/10.3390/catal10101193.

Full text
Abstract:
Among endo-mannanases, glycoside hydrolase (GH) family 26 enzymes have been shown to be more catalytically active than GH5 enzymes on mannans. However, only GH5 endo-mannanases have been used for the formulation of enzyme cocktails. In this study, Bacillus sp.-derived GH5 and GH26 endo-mannanases were comparatively analysed biochemically for their synergistic action with a commercial cellulase blend, CTec2, during pre-treated lignocellulose degradation. Substrate specificity and thermo-stability studies on mannan substrates showed that GH26 endo-mannanase was more catalytically active and stable than GH5. GH26 also exhibited higher binding affinity for mannan than GH5, while GH5 showed more affinity for lignocellulosic substrates than GH26. Applying the endo-mannanases in combination with CTec2 for lignocellulose degradation led to synergism with a 1.3-fold increase in reducing sugar release compared to when CTec2 was used alone. This study showed that using the activity of endo-mannanases displayed with model substrates is a poor predictor of their activity and synergism on complex lignocelluloses.
APA, Harvard, Vancouver, ISO, and other styles
6

Saini, Anita, Neeraj K. Aggarwal, Anuja Sharma, and Anita Yadav. "Prospects for Irradiation in Cellulosic Ethanol Production." Biotechnology Research International 2015 (December 29, 2015): 1–13. http://dx.doi.org/10.1155/2015/157139.

Full text
Abstract:
Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol.
APA, Harvard, Vancouver, ISO, and other styles
7

Sadhukhan, Jhuma, Bruno G. Pollet, and Miles Seaman. "Hydrogen Production and Storage: Analysing Integration of Photoelectrolysis, Electron Harvesting Lignocellulose, and Atmospheric Carbon Dioxide-Fixing Biosynthesis." Energies 15, no. 15 (July 28, 2022): 5486. http://dx.doi.org/10.3390/en15155486.

Full text
Abstract:
Green hydrogen from photocatalytic water-splitting and photocatalytic lignocellulosic reforming is a significant proposition for renewable energy storage in global net-zero policies and strategies. Although photocatalytic water-splitting and photocatalytic lignocellulosic reforming have been investigated, their integration is novel. Furthermore, biosynthesis can store the evolved hydrogen and fix the atmospheric carbon dioxide in a biocathode chamber. The biocathode chamber is coupled to the combined photocatalytic water-splitting and lignocellulose oxidation in an anode chamber. This integrated system of anode and biocathode mimics a (bio)electrosynthesis system. A visible solar radiation-driven novel hybrid system comprising photocatalytic water-splitting, lignocellulose oxidation, and atmospheric CO2 fixation is, thus, investigated. It must be noted that there is no technology for reducing atmospheric CO2 concentration. Thus, our novel intensified technology enables renewable and sustainable hydrogen economy and direct CO2 capture from air to confront climate change impact. The photocatalytic anode considered is CdS nanocomposites that give a low absorption onset (200 nm), high absorbance range (200–800 nm), and narrow bandgap (1.58–2.4 V). The biocathode considered is Ralstonia eutropha H16 interfaced with photocatalytic lignocellulosic oxidation and a water-splitting anode. The biocathode undergoes autotrophic metabolism fixing atmospheric CO2 and hydrogen to poly(3-hydroxybutyrate) biosynthesis. As the hydrogen evolved can be readily stored, the electron–hole pair can be separated, increasing the hydrogen evolution efficiency. Although there are many experimental studies, this study for the first time sets the maximum theoretical efficiency target from mechanistic deductions of practical insights. Compared to physical/physicochemical absorption with solvent recovery to capture CO2, the photosynthetic CO2 capture efficiency is 51%. The maximum solar-to-hydrogen generation efficiency is 33%. Lignocelluloses participate in hydrogen evolution by (1–4)-glycosidic bond decomposition, releasing accessible sugar monomers or monosaccharides forming a Cd–O–R bond with the CdS/CdOx nanocomposite surface used as a photocatalyst/semiconductor, leading to CO32− in oxidised carboxylic acid products. Lignocellulose dosing as an oxidising agent can increase the extent of water-splitting. The mechanistic analyses affirm the criticality of lignocellulose oxidation in photocatalytic hydrogen evolution. The critical conditions for success are increasing the alcohol neutralising agent’s strength, increasing the selective (ligno)cellulose dosing, broadening the hybrid nanostructure of the photocatalyst/semiconductor, enhancing the visible-light range absorbance, and increasing the solar energy utilisation efficiency.
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Mingyang, Junyou Chen, Yanyan Yu, and Yun Liu. "Peroxyacetic Acid Pretreatment: A Potentially Promising Strategy towards Lignocellulose Biorefinery." Molecules 27, no. 19 (September 26, 2022): 6359. http://dx.doi.org/10.3390/molecules27196359.

Full text
Abstract:
The stubborn and complex structure of lignocellulose hinders the valorization of each component of cellulose, hemicellulose, and lignin in the biorefinery industries. Therefore, efficient pretreatment is an essential and prerequisite step for lignocellulose biorefinery. Recently, a considerable number of studies have focused on peroxyacetic acid (PAA) pretreatment in lignocellulose fractionation and some breakthroughs have been achieved in recent decades. In this article, we aim to highlight the challenges of PAA pretreatment and propose a roadmap towards lignocellulose fractionation by PAA for future research. As a novel promising pretreatment method towards lignocellulosic fractionation, PAA is a strong oxidizing agent that can selectively remove lignin and hemicellulose from lignocellulose, retaining intact cellulose for downstream upgrading. PAA in lignocellulose pretreatment can be divided into commercial PAA, chemical activation PAA, and enzymatic in-situ generation of PAA. Each PAA for lignocellulose fractionation shows its own advantages and disadvantages. To meet the theme of green chemistry, enzymatic in-situ generation of PAA has aroused a great deal of enthusiasm in lignocellulose fractionation. Furthermore, mass balance and techno-economic analyses are discussed in order to evaluate the feasibility of PAA pretreatment in lignocellulose fractionation. Ultimately, some perspectives and opportunities are proposed to address the existing limitations in PAA pretreatment towards biomass biorefinery valorization. In summary, from the views of green chemistry, enzymatic in-situ generation of PAA will become a cutting-edge topic research in the lignocellulose fractionation in future.
APA, Harvard, Vancouver, ISO, and other styles
9

Utomo, Suryadi Budi, Muhammad Ivan Fadillah, and Rika Yulianti. "Profile of the Adsorption Ability of Sulfonate-Modified Lignocellulose Based on Bagasse Waste to Some Batik Textile Dyes." Key Engineering Materials 963 (October 13, 2023): 61–70. http://dx.doi.org/10.4028/p-b9ukxd.

Full text
Abstract:
The presence of synthetic dye contamination produced from the batik industry encourages research to overcome it through the adsorption method using a smart adsorbent, in this case an adsorbent that has several active groups. This study aims to examine the adsorbent of lignocellulose sulfonate based on bagasse waste for some textile dyes used in the batik industry. The synthesis of lignocellulose sulfonate was carried out through several steps such as extraction and activation using Na2SO3 and NaHCO3. The resulting products were then characterized using FTIR and SEM apparatures and applied them as an adsorbent for Remazol Red RB and Indanthrene Blue RS dyes. The adsorption test was carried out using bagasse, lignocellulose, and lignocellulose sulfonate adsorbents at a solution concentration of 50 ppm with variations in contact time of 5, 10, 20, 40, 80, and 160 minutes. The remaining dye content in the solution was then tested using a UV-Vis Spectrophotometer. From the experimental results, it is known that lignocellulose sulfonate, lignocellulose, and bagasse are able to absorb Remazol Red RB dye, respectively, by 84.41%, 63.87% and 61.52%. While for Indanthrene Blue RS dye, the largest absorption was found in lignocellulose sulfonate adsorbents of 56.35%, lignocellulose 50.72%, and baggase 45.93%. The highest adsorption capacity was found in the lignocellulosic sulfonate adsorbent, namely 42.2081 ppm for Remazol Red RB adsorption and 28.1771 ppm for Indanthrene Blue RS dye.
APA, Harvard, Vancouver, ISO, and other styles
10

Heeger, Felix, Elizabeth C. Bourne, Christian Wurzbacher, Elisabeth Funke, Anna Lipzen, Guifen He, Vivian Ng, Igor V. Grigoriev, Dietmar Schlosser, and Michael T. Monaghan. "Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis aquatica." Journal of Fungi 7, no. 10 (October 12, 2021): 854. http://dx.doi.org/10.3390/jof7100854.

Full text
Abstract:
Fungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla. We sequenced the genome of an exclusively aquatic ascomycete (the aquatic hyphomycete Clavariopsis aquatica), documented the presence of genes for the modification of lignocellulose and its constituents, and compared differential gene expression between C. aquatica cultivated on lignocellulosic and sugar-rich substrates. We identified potential peroxidases, laccases, and cytochrome P450 monooxygenases, several of which were differentially expressed when experimentally grown on different substrates. Additionally, we found indications for the regulation of pathways for cellulose and hemicellulose degradation. Our results suggest that C. aquatica is able to modify lignin to some extent, detoxify aromatic lignin constituents, or both. Such characteristics would be expected to facilitate the use of carbohydrate components of lignocellulose as carbon and energy sources.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lignocellulose"

1

Warsame, Mohamed. "Saccharification of lignocellulose." Thesis, Malmö högskola, Fakulteten för hälsa och samhälle (HS), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-25910.

Full text
Abstract:
Den ökande efterfrågan på energi och den förväntade nedgången i råoljeproduktion har lett till ett enormt sökande efter nya energikällor.Cellväggen i växter består till stor del av lignocellulosa som i sin tur innehåller cellulosa och hemicellulosa. Dessa polysackarider är av stor betydelse för sökandet efter förnyelsebar energi.Cellväggen måste förbehandlas innan den kan brytas ner till enkla sockerarter. Efter nedbrytning kan monosackariderna användas till produktion av etanol eller biogas genom väl etablerade fermenteringstekniker. Syftet med denna studie var att jämföra och utvärdera några metoder som används vid degradering av lignocellulosa. Tre behandlingar har jämfört för att se vilken som ger mest avkastning i form av monosackarider. Vetehalm användes som substrat och hydrolyseras med hjälp av tre kommersiella enzymblandningar. Proverna förbehandlades före den enzymatiska reaktionen med antingen mikrovågor eller ångexplosion.Resultaten visade att en behandling med mikrovågsbestrålning eller ångexplosion kombinerad med enzymhydrolys gav högst avkastning. De slutsatser som kan dras är att en mekanisk förbehandling ökar utbytet drastiskt men är otillräcklig i sig. Ytterligare enzymatisk behandling är nödvändig att erhålla större mängder enkla sockerarter från lignocellulosa.
The increasing energy demand and the anticipated decline in crude oil production has led to an immense search for new energy sources. Plant cell walls contain lignocellulose that conserve great amounts of energy. These polysaccharides are of high importance for the search of renewable energy sources. Pretreatment of the cell wall is necessary in order to hydrolyse it to its component sugars. Once degraded to monomeric sugars it can be fermented to either ethanol or biogas through established fermentation technologies.The aim of this thesis was to compare and evaluate some of the methods used for sacchrification of lignocellulose. Three treatments where compared to determine which is highest yielding. These are enzymatic hydrolysis, microwave irradiation and steam explosion.Wheat straw was used as substrate and hydrolysed by three commercial enzyme mixtures. Samples were pretreated before the enzymatic reaction with either microwave or steam explosion. Results showed that a treatment of either microwave irradiation or steam explosion combined with enzyme hydrolysis gives the highest yield in monomeric sugars. The conclusions that can be drawn are that mechanical pretreatment increases yield drastically but is insufficient in its self. Further enzymatic treatment of wheat straw is necessary to obtain high amounts of simple sugars.
APA, Harvard, Vancouver, ISO, and other styles
2

Garcia, Susana. "Biodégradation des lignocelluloses : étude microbiologique, physiologique et ultrastructurale." Paris 7, 1988. http://www.theses.fr/1988PA077057.

Full text
Abstract:
Étude de l'optimisation de la ligninolyse par fermentation mixte de phanérochaète chrysosporium sur des substrats naturels. Puis étude des mécanismes de la dégradation de la lignine et mise en évidence du rôle des enzymes impliquées : la ligninase et la péroxydase.
APA, Harvard, Vancouver, ISO, and other styles
3

Keränen, A. (Anni). "Water treatment by quaternized lignocellulose." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526215143.

Full text
Abstract:
Abstract Water-related problems are increasing globally, and new, low-cost technologies are needed to resolve them. Lignocellulosic waste materials contain reactive functional groups that can be used to provide a bio-based platform for the production of water treatment chemicals. Research on bio-based ion exchange materials in the treatment of real wastewaters is needed. In this thesis, anion exchange materials were prepared through chemical modification (epichlorohydrin, ethylenediamine and triethylamine) using five Finnish lignocellulosic materials as bio-based platforms. Scots pine sawdust and bark (Pinus sylvestris), Norway spruce bark (Picea abies), birch bark (Betula pendula/pubescens) and peat were chosen due to their local availability and abundance. The focus was placed on NO3- removal, but uptake of heavy metals, such as nickel, was also observed and studied. Studies on maximum sorption capacity, mechanism, kinetics, and the effects of temperature, pH and co-existing anions were used to elucidate the sorption behaviour of the prepared materials in batch and column tests. All five materials removed over 70% of NO3- at pH 3–10 (initial conc. 30 mg N/l). Quaternized pine sawdust worked best (max. capacity 32.8 mg NO3-N/g), and also in a wide temperature range (5–70°C). Column studies on quaternized pine sawdust using mining wastewater and industrial wastewater from a chemical plant provided information about the regeneration of exhausted material and its suitability for industrial applications. Uptake of Ni, V, Co and U was observed. Column studies proved the easy regeneration and reusability of the material. For comparison, pine sawdust was also modified using N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride and utilized to remove NO3- from groundwater and industrial wastewater. A maximum sorption capacity of 15.3 mg NO3-N/g was achieved for the synthetic solution. Overall, this thesis provides valuable information about bio-based anion exchange materials and their use in real waters and industrial applications
Tiivistelmä Edullisia ja kestäviä vedenkäsittelytekniikoita tarvitaan kasvavien vesiongelmien ratkaisemiseen. Lignoselluloosaa, kuten sahanpurua, syntyy suuria määriä teollisuuden sivutuotteena. Sen reaktiivisia funktionaalisia ryhmiä voidaan modifioida kemiallisesti ja valmistaa siten biopohjaisia vedenkäsittelykemikaaleja. Tutkimustietoa oikeiden jätevesien puhdistuksesta biopohjaisilla ioninvaihtomateriaaleilla tarvitaan lisää, jotta materiaalien käyttöä voidaan kehittää ja edistää. Tässä väitöstyössä valmistettiin anioninvaihtomateriaaleja modifioimalla kemiallisesti viittä suomalaista lignoselluloosamateriaalia: männyn sahanpurua ja kuorta (Pinus sylvestris), kuusen kuorta (Picea abies), koivun kuorta (Betula pendula/pubescens) ja turvetta. Menetelmässä käytettiin epikloorihydriiniä, etyleenidiamiinia ja trietyyliamiinia orgaanisessa liuotinfaasissa. Työssä keskityttiin erityisesti nitraatin poistoon sekä synteettisistä että oikeista jätevesistä. Materiaalien soveltuvuutta teollisiin sovelluksiin arvioitiin maksimisorptiokapasiteetin, sorptioisotermien, kinetiikka- ja kolonnikokeiden sekä pH:n, lämpötilan ja muiden anionien vaikutusta tutkivien kokeiden avulla. Kaikki viisi kationisoitua tuotetta poistivat yli 70 % nitraatista laajalla pH-alueella (3–10). Kationisoitu männyn sahanpuru osoittautui parhaaksi materiaaliksi (32,8 mg NO3-N/g), ja se toimi laajalla lämpötila-alueella (5–70°C). Kolonnikokeet osoittivat sen olevan helposti regeneroitavissa ja uudelleenkäytettävissä. Tuotetta testattiin myös kaivos- ja kemiantehtaan jäteveden käsittelyyn, ja kokeissa havaittiin hyviä nikkeli-, uraani-, vanadiini- ja kobolttireduktioita. Männyn sahanpurua modifioitiin vertailun vuoksi myös kationisella monomeerilla, N-(3-kloro-2-hydroksipropyyli)trimetyyliammoniumkloridilla. Tuotteen maksimisorptiokapasiteetiksi saatiin 15,3 mg NO3-N/g ja se poisti nitraattia saastuneesta pohjavedestä. Kokonaisuudessaan väitöskirjatyö tarjoaa uutta tietoa biopohjaisten ioninvaihtomateriaalien valmistamisesta ja niiden soveltuvuudesta oikeiden teollisuusjätevesien käsittelyyn
APA, Harvard, Vancouver, ISO, and other styles
4

Van, Dyk Jacoba Susanna. "Characterisation of the cellulolytic and hemicellulolytic system of Bacillus Licheniformis SVD1 and the isolation and characterisation of a multi-enzyme complex." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1003995.

Full text
Abstract:
The biological degradation of lignocellulose into fermentable sugars for the production of liquid transportation fuels is feasible and sustainable, but equires a variety of enzymes working in synergy as lignocellulose is a complex and recalcitrant substrate. The cellulosome is a multi-enzyme complex (MEC) with a variety of cellulolytic and hemicellulolytic enzymes that appears to facilitate an enhanced synergy and efficiency, as compared to free enzymes, for the degradation of recalcitrant substrates such as lignocellulose and plant cell walls. Most of the studies on cellulosomes have focused on a few organisms; C. thermocellum, C. cellulovorans and C. cellulolyticum, and there is only limited knowledge vailable on similar complexes in other organisms. Some MECs have been identified in aerobic bacteria such as Bacillus circulans and Paenibacillus curdlanolyticus, but the nature of these MECs have not been fully elucidated. This study investigated the cellulolytic and emi-cellulolytic system of Bacillus licheniformis SVD1 with specific reference to the presence of a MEC, which has never been reported in the literature for B. licheniformis. A MEC of approximately 2,000 kDa in size, based on size exclusion chromatography using Sepharose 4B, was purified from a culture of B. licheniformis. When investigating the presence of enzyme activity in the total crude fraction as well as the MEC of a birchwood xylan culture, B. licheniformis was found to display a variety of enzyme activities on a range of substrates, although xylanases were by far the predominant enzyme activity present in both the crude and MEC fractions. Based on zymogram analysis there were three CMCases, seven xylanases, three mannanases and two pectinases in the crude fraction, while the MEC had two CMCases, seven xylanases, two mannanases and one pectinase. The pectinases in the crude could be identified as a pectin methyl esterase and a lyase, while the methyl esterase was absent in the MEC. Seventeen protein species could be detected in the MEC but only nine of these displayed activity on the substrates tested. The possible presence of a β-xylosidase in the crude fraction was deduced from thin layer chromatography (TLC) which demonstrated the production of xylose by the crude fraction. It was furthermore established that B. licheniformis SVD1 was able to regulate levels of enzyme expression based on the substrate the organism was cultured on. It was found that complexed xylanase activity had a pH optimum of between pH 6.0 and 7.0 and a temperature optimum of 55oC. Complexed xylanase activity was found to be slightly inhibited by CaCl2 and inhibited to a greater extent by EDTA. Complexed xylanase activity was further shown to be activated in the presence of xylose and xylobiose, both compounds which are products of enzymatic degradation. Ethanol was found to inhibit complexed xylanase activity. The kinetic parameters for complexed xylanase activity were measured and the Km value was calculated as 2.84 mg/ml while the maximal velocity (Vmax) was calculated as 0.146 U (μmol/min/ml). Binding studies, transmission electron microscopy (TEM) and a bioinformatic analysis was conducted to investigate whether the MEC in B. licheniformis SVD1 was a putative cellulosome. The MEC was found to be unable to bind to Avicel, but was able to bind to insoluble birchwood xylan, indicating the absence of a CBM3a domain common to cellulosomal scaffoldin proteins. TEM micrographs revealed the presence of cell surface structures on cells of B. licheniformis SVD1 cultured on cellobiose and birchwood xylan. However, it could not be established whether these cell surface structures could be ascribed to the presence of the MECs on the cell surface. Bioinformatic analysis was conducted on the available genome sequence of a different strain of B. licheniformis, namely DSM 13 and ATCC 14580. No sequence homology was found with cohesin and dockerin sequences from various cellulosomal species, indicating that these strains most likely do not encode for a cellulosome. This study described and characterised a MEC that was a functional enzyme complex and did not appear to be a mere aggregation of proteins. It displayed a variety of hemi-cellulolytic activities and the available evidence suggests that it is not a cellulosome, but should rather be termed a xylanosome. Further investigation should be carried out to determine the structural basis of this MEC.
APA, Harvard, Vancouver, ISO, and other styles
5

Qin, Wenjuan. "High consistency enzymatic hydrolysis of lignocellulose." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/24374.

Full text
Abstract:
The work described in this thesis focused on the development of a practical, high consistency hydrolysis and fermentation processes utilizing existing pulp mill equipment. Carrying out enzymatic hydrolysis at high substrate loading provided a practical means of reducing the overall cost of a lignocellulose to ethanol bioconversion process. A laboratory peg mixer was used to carry out high consistency hydrolysis of several lignocellulosic substrate including an unbleached hardwood pulp (UBHW), an unbleached softwood pulp (UBSW), and an organosolv pretreated poplar (OPP) pulp. Enzymatic hydrolysis of OPP for 48 hours resulted in a hydrolysate with a glucose content of 158 g/L. This is among the highest glucose concentration reported for the enzymatic hydrolysis of lignocellulosic substrates. The fermentation of UBHW and OPP hydrolysates with high glucose content led to high ethanol concentrations in the final fermentation broth (50.4 and 63.1 g/L, respectively). These values were again as high as any values reported previously in the literature. To overcome end-product inhibition caused by the high glucose concentration resulting from hydrolysis at high substrate concentration, a new hydrolysis and fermentation configuration, (liquefaction followed by simultaneous saccharification and fermentation (LSSF)), was developed and evaluated using the OPP substrate. Applying LSSF led to a production of 63 g/L ethanol from OPP. The influence of enzyme loading and β-glucosidase addition on ethanol yield from the LSSF process was also investigated. It was found that, at higher enzyme loading (10FPU or higher), the ethanol production from LSSF was superior to that of the SHF process. It was apparent that the LSSF process could significantly reduce end-product inhibition when compared to a Separate Hydrolysis and Fermentation (SHF) process. It was also apparent that β-glucosidase addition was necessary to achieve efficient ethanol production when using the LSSF process. A 10CBU β-glucosidase supplement was enough for the effective conversion of the 20% consistency OPP by LSSF. The rheological property change of the different substrates at the liquefaction stage was also examined using the rheometer technique. The use of a fed-batch hydrolysis process to further improve the high consistency hydrolysis efficiency was also assessed.
APA, Harvard, Vancouver, ISO, and other styles
6

Bi, Ran. "Lignocellulose Degradation by Soil Micro-organisms." Doctoral thesis, KTH, Träkemi och massateknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182336.

Full text
Abstract:
Lignocellulosic biomass is a sustainable resource with abundant reserves. Compared to petroleum ‐ based products, the biomass ‐ derived polymers and chemicals give better environmental profiles. A lot of research interest is focused on understanding the lignocellulose structures. Lignin, among the three major wood components, represents most difficulty for microbial degradation because of its complex structure and because cross ‐ linking to hemicellulose makes wood such a compact structure. Nevertheless, wood is naturally degraded by wood ‐ degrading micro ‐ organisms and modified and partly degraded residual of lignin goes into soil. Therefore soil serves as a good environment in which to search for special lignin ‐ degraders. In this thesis, different types of lignin have been used as sole carbon sources to screen for lignin ‐ degrading soil micro ‐ organisms. Eleven aerobic and three anaerobic microbe strains have been isolated and identified as able to grow on lignin. The lignin degradation patterns of selected strains have been studied and these partly include an endwise cleavage of  β‐ O ‐ 4 bonds in lignin and is more complex than simple hydrolytic degradation. As lignin exists in wood covalently bonded to hemicellulose, one isolated microbe strain, Phoma herbarum, has also been studied with regards to its ability to degrade covalent lignin polysaccharide networks (LCC). The results show that its culture filtrate can attack lignin ‐ polysaccharide networks in a manner different from that of the commercial enzyme product, Gammanase, possibly by selective cleavage of phenyl glucoside bonds. The effects on LCC of Phoma herbarum also enhance polymer extractability. Hot ‐ water extraction of a culture filtrate of Phoma herbarum ‐ treated fiberized spruce wood material gave an amount of extracted galactoglucomannan more than that given by the Gammanase ‐ treated material and non ‐ enzyme ‐ treated material. Over millions of years of natural evolution, micro ‐ organisms on the one hand develop so that they can degrade all wood components to get energy for growth, while plants on the other hand also continuously develop to defend from microbial attack. Compared with lignin and cellulose, hemicelluloses as major components of plant cell walls, are much more easily degraded, but hemicelluloses differ from cellulose in that they are acetylated to different extents. The biological functions of acetylation are not completely understood, but it is suggested is that one function is to decrease the microbial degradability of cell walls. By cultivation of soil micro ‐ organisms using mannans acetylated to deffernent degrees as sole carbon source on agar plates, we were able to see significant trends where the resistance towards microbial degradation of glucomannan and galactomannan increased with increasing degree of acetylation. Possible mechanisms and the technological significance of this are discussed. Tailoring the degree of acetylation of polysaccharide materials might slow down the biodegradation, making it possible to design a material with a degradation rate suited to its application.

QC 20160223

APA, Harvard, Vancouver, ISO, and other styles
7

Mamphogoro, Tshifhiwa Paris. "Laccases from actinomycetes for lignocellulose degradation." Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/3945.

Full text
Abstract:
>Magister Scientiae - MSc
The purpose of this study shows that lignocellulose has a complex structure composed mainly of lignin, hemicellulose and cellulose. Several enzymes are needed for the degradation of lignocellulose into simple sugars. Actinomycetes are known to produce laccases which are able to degrade lignin. Laccase activities were detected in actinomycete strains MS26 isolated from soil collected from the Zambian Copperbelt and DFNR17 isolated from soil collected from a New Zealand farm. Morphological studies showed that the strains produced extensively branched substrate mycelia and aerial hyphae. Micromorphological characteristics were consistent with the assignment of these strains to the genus Streptomyces. Isolates were found to be mesophiles, with growth occurring in a temperature range of 16 and 45°C. Optimal growth occurred at temperatures between 30 and 37oC. Analysis of the 16S rRNA gene sequences of the strains showed that strain MS26 had the highest sequence similarity (99%) to Streptomyces atrovirens strain NRRL B-16357 and Streptomyces viridodiastaticus strain IFO 13106. Strain DFNR17 had the highest 16S rRNA gene sequence similarity (99%) to Streptomyces althioticus strain KCTC 9752. The strains shared several physiological and biochemical characteristics with their closest neighbours which, along with 16S rRNA gene sequences analysis, confirmed that the strains were members of the genus Streptomyces. Attempts to identify the laccase genes from these isolates by screening a fosmid library failed. Subsequently isolates were screened by PCR using laccase-like cooper oxidase degenerate primers designed from several Streptomyces strains. A 300 bp amplicon was obtained from both isolates. Phylogenetic analysis was performed and both amplicons from strains MS26 and DFNR17 had the highest similarities with the copper oxidase gene from Streptomyces griseoflavus strain Tu4000. Therefore it is probable that the laccase activity observed for these strains is due to the activity of copper oxidase gene product
APA, Harvard, Vancouver, ISO, and other styles
8

Moxley, Geoffrey W. "Studies of Cellulosic Ethanol Production from Lignocellulose." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/43372.

Full text
Abstract:
At present, the worldâ s transportation sector is being principally supplied by fossil fuels. However, energy consumption in this sector is drastically increasing and there are concerns with supply, cost, and environmental issues with the continuing use of fossil fuels. Utilizing non-petroleum ethanol in the transportation sector reduces the dependence on oil, and allows for cleaner burning of gasoline.

Lignocellulose materials are structurally composed of five types of polymeric sugars, glucan, galactan, mannan, arabinan, and xylan. NREL has developed a quantitative saccharification (QS) method for determining carbohydrate composition. We proposed a new protocol based on the NREL 2006 Laboratory Analytical Procedure â Determination of Structural Carbohydrates and Lignin in Biomassâ (Sluiter et al. 2006a) with a slight modification, in which xylose concentration was determined after the secondary hydrolysis by using 1% sulfuric acid rather than 4% sulfuric acid. We found that the current NREL protocol led to a statistically significant overestimation of acid-labile xylan content ranging from 4 to 8 percent.

Lignocellulosic biomass is naturally recalcitrant to enzymatic hydrolysis, and must be pretreated before it can be effectively used for bioethanol production. One such pretreatment is a fractionation process that separates lignin and hemicellulose from the cellulose and converts crystalline cellulose microfibrils to amorphous cellulose. Here we evaluated the feasibility of lignocellulose fractionation applicable to the hurds of industrial hemp. Hurds are the remaining material of the stalk after all leaves, seeds, and fiber have been stripped from the plant. After optimizing acid concentration, reaction time and temperature, the pretreated cellulosic samples were hydrolyzed to more than 96% after 24 hours of hydrolysis (enzyme loading conditions of 15 FPU/g glucan Spezyme CP and 60 IU/g glucan Novozyme 188) at the optimal pretreatment condition (> 84% H3PO4, > 50 °C and > 1 hour). The overall glucose and xylose yields were 89% (94% pretreatment; 96% digestibility) and 61%, respectively. All data suggest the technical feasibility of building a biorefinery based on the hurds of industrial hemp as a feedstock and a new lignocellulose fractionation technology for producing cellulosic ethanol. The choice of feedstock and processing technology gives high sugar yields, low processing costs, low cost feedstock, and low capital investment.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles
9

Clarke, Anna Maria. "The microbial ecology of sulphidogenic lignocellulose degradation." Thesis, Rhodes University, 2007. http://hdl.handle.net/10962/d1008181.

Full text
Abstract:
Acid mine drainage is a well known environmental pollutant, not only in South Africa, but throughout the world, and the use of microbial processes in the treatment of these wastes has been the subject of investigation over past decades. Lignocellulose packed-bed reactors have been used in passive treatment systems, and, although effective initially, they show early decline in performance while the packing material remains largely un-utilized. Little is known about this phenomenon which remains a severe constraint in the development of efficient passive mine water treatment systems. It has been proposed that the degradation pathways of the complex lignocellulose substrate may be limited in some way in these systems during the manifestation of this effect. This study has addressed the problem using a molecular microbial ecology methodology in an attempt to relate trophic functions of the microbial population to the physico-chemical data of the system. A field-scale lignocellulose packed-bed reactor located at Vryheid Coronation Colliery (Northern Kwa-Zulu Natal province, South Africa) was monitored for six years and the results showed the classic profile of performance decline related to a slowdown in sulphate reduction and alkalinity production. The reactor was decommissioned , comprehensive samples were collected along the depth profile and the microbial populations investigated by means of 16S rRNA gene methodology. The population was found to include cellulolytic Clostridia spp., CytophagaIFlavobacterlBacteroidetes, Sphingomonadaceae and as yet uncultured microorganisms related to microbiota identified in the rumen and termite gut. These are all known to be involved as primary fermenters of cellulose. Oesulphosporosinus was present as sulphate reducer. A comparison of substrata sampling and population distribution suggested that spatial and temporal gradients within the system may become established over the course of its operation. Based on these findings, a laboratory-scale reactor was constructed to simulate the performance of the packed-bed reactor under controlled experimental conditions. The laboratory-scale reactor was operated for 273 days and showed comparable performance to that in the field in both biomolecular and physicochemical data. Clearly defined trophic niches were observed. These results suggested that a sequence of events does occur in lignocellulose degradation over time. Based on the spatial and temporal column studies, a descriptive model was proposed to account for these events. It was found that fermentative organisms predominate in the inlet zone of the system using easily extractable compounds from the wood, thus providing feedstock for sulphate reduction occurring in the succeeding compartments. Production of sulphide and alkalinity appears to be involved in the enhancement of lignin degradation and this, in turn, appears to enhance access to the cellulose fraction. However, once the readily extractables are exhausted, the decline in sulphide and alkalinity production leads inexorably to a decline in the overall performance of the system as a sulphate reducing unit operation. These observations led to the proposal that with the addition of a limited amount of a readily available carbon source, such as molasses, in the initial zone of the the reactor, the ongoing generation of sulphide would be sustained and this in turn would sustain the microbial attack on the lignocellulose complex. This proposal was tested in scale-up studies and positive results indicate that the descriptive model may, to some extent, provide an account of events occurring in these systems. The work on sustaining lignocellulose degradation through the maintenance of sulphate reduction in the initial stages of the reactor flow path has led to the development of the Degrading Packed-bed Reactor concept and that, has subsequently been successfully evaluated in the field.
APA, Harvard, Vancouver, ISO, and other styles
10

icardi, sara. "Lignocellulose degradation: a proteomic and metagenomic study." Doctoral thesis, Università del Piemonte Orientale, 2018. http://hdl.handle.net/11579/97185.

Full text
Abstract:
Wood decay processes have recently attracted so much attention, as lignocellulose biomass (LCB) represents the most abundant renewable resource on the Earth and can provide fermentable sugar monomers convertible into value-added products. In order to improve the efficiency and ecological sustainability of the process, new insights about lignocellulosic biomass microbial degradation could be of fundamental importance. Organic matter rich environmental samples may host a large variety of microbes, most of them specialized in the degradation of LCB and thus important as potential sources of biochemical catalysts for value added products production, as well as for the global carbon cycle. The aim of this thesis is to study the LCB degradation by two different approaches, exploiting proteomic and metagenomic tools. Proteomic analyses were conducted on the secretomes of a bacterium, Cellulomonas fimi, grown in presence of carboxymethyl-cellulose or different pretreated LCBs as unique carbon sources. Zymography and enzyme activity assays confirmed the lignocellulose degrading capabilities of C. fimi, showing endoglucanase and xylanase activities. The comparison among secretomes (in terms of enzymatic activities and protein composition) obtained after growth on different substrates highlighted: i) the major proteins and CAZymes (Carbohydrate Active enZymes) secreted and involved in LCB degradation and ii) the substrate influence on the secretome protein composition and enzymatic activity. Metagenomic analyses were indeed conducted on two groups of representative samples (two decaying woods and two control soils) in order to characterize the microbial communities inhabiting them. The microorganisms (bacteria and fungi) found to be more represented in decaying wood samples than in soils could be considered the most probably responsible for wood degradation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Lignocellulose"

1

Faraco, Vincenza, ed. Lignocellulose Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saha, Badal C., and Kyoshi Hayashi, eds. Lignocellulose Biodegradation. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

1949-, Saha Badal C., Hayashi Kyoshi 1952-, American Chemical Society. Cellulose and Renewable Materials Division, and American Chemical Society Meeting, eds. Lignocellulose biodegradation. Washington, DC: American Chemical Society, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karimi, Keikhosro, ed. Lignocellulose-Based Bioproducts. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14033-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Hongzhang. Biotechnology of Lignocellulose. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6898-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chander, Kuhad Ramesh, and Singh Ajay 1963-, eds. Lignocellulose biotechnology: Future prospects. Tunbridge Wells: Anshan, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

P, Coughlan Michael, ed. Enzyme systems for lignocellulose degradation. London: Elsevier, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, Micholas Dean, ed. Understanding Lignocellulose: Synergistic Computational and Analytic Methods. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

European, Workshop on Lignocellulosics and Pulp (1st 1990 Bergedorf (Hamburg Germany). Utilization and analysis of lignins: 1st European Workshop on Lignocellulosics and Pulp (EWLP) : Hamburg-Bergedorf, Federal Republic of Germany, September 18-20, 1990 : proceedings. Hamburg: Buchhandlung M. Wiedebusch, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Palonen, Hetti. Role of lignin in the enzymatic hydrolysis of lignocellulose. Espoo [Finland]: VTT Technical Research Centre of Finland, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Lignocellulose"

1

Watanabe, Takashi. "Introduction: Potential of Cellulosic Ethanol." In Lignocellulose Conversion, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hadar, Yitzhak. "Sources for Lignocellulosic Raw Materials for the Production of Ethanol." In Lignocellulose Conversion, 21–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Woiciechowski, Adenise Lorenci, Luciana Porto de Souza Vandenberghe, Susan Grace Karp, Luiz Alberto Junior Letti, Júlio Cesar de Carvalho, Adriane Bianchi Pedroni Medeiros, Michele Rigon Spier, Vincenza Faraco, Vanete Thomaz Soccol, and Carlos Ricardo Soccol. "The Pretreatment Step in Lignocellulosic Biomass Conversion: Current Systems and New Biological Systems." In Lignocellulose Conversion, 39–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Balan, Venkatesh, Mingjie Jin, Alan Culbertson, and Nirmal Uppugundla. "The Saccharification Step: Trichoderma Reesei Cellulase Hyper Producer Strains." In Lignocellulose Conversion, 65–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Couturier, Marie, and Jean-Guy Berrin. "The Saccharification Step: The Main Enzymatic Components." In Lignocellulose Conversion, 93–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cobucci-Ponzano, Beatrice, Elena Ionata, Francesco La Cara, Alessandra Morana, Maria Carmina Ferrara, Luisa Maurelli, Andrea Strazzulli, Rosa Giglio, and Marco Moracci. "Extremophilic (Hemi)cellulolytic Microorganisms and Enzymes." In Lignocellulose Conversion, 111–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Binod, Parameswaran, Raveendran Sindhu, and Ashok Pandey. "The Alcohol Fermentation Step: The Most Common Ethanologenic Microorganisms Among Yeasts, Bacteria and Filamentous Fungi." In Lignocellulose Conversion, 131–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Castro, Eulogio. "Other Ethanologenic Microorganisms." In Lignocellulose Conversion, 151–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Amore, Antonella, Simona Giacobbe, and Vincenza Faraco. "Consolidated Bioprocessing for Improving Cellulosic Ethanol Production." In Lignocellulose Conversion, 169–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Akin, Danny E. "Grass Lignocellulose." In Applied Biochemistry and Biotecnology, 3–15. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-60327-181-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lignocellulose"

1

Zhu, Kuihong, Tong Liu, Jia Liu, Xu Cao, Jiaojiao Liu, and Jie Wang. "Microbial degradation of lignocellulose." In 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF BIOLOGICAL SCIENCES AND ENGINEERING (FBSE 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0048528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Comparison of crystallinity index computational methods based on lignocellulose X-ray diffractogram." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-16.

Full text
Abstract:
Abstract. Crystallinity index (CrI) obtained from X-ray diffraction (XRD) technique is often utilized as a characterization parameter of lignocellulosic biomass. There exist a few methodologies to calculate CrI but the respective merit as lignocellulose characterization parameter is not very clear. Here four commonly employed CrI computational methods were applied to raw and torrefied biomasses (palm kernel shell and sugarcane bagasse), cellulose- and lignin-added raw biomasses and artificial mixtures of cellulose, hemicellulose and lignin in order to compare the effect of the composition of lignocellulosic biomass toward CrI calculated from X-ray diffractogram. Calculated CrI systematically showed larger value than the weight percentage of cellulose contained in the samples. Among the four computational methods compared, Segal (single peak height ratio) method and Ruland-Vonk (two-peak area ratio) method appeared to give reasonable CrI numbers although they are still overestimating the cellulose weight ratio. The Ruland-Vonk method consistently gave the lowest CrI values among the methods examined.
APA, Harvard, Vancouver, ISO, and other styles
3

Meurs, Marie-Jean, Caitlin Murphy, Ingo Morgenstern, Nona Naderi, Greg Butler, Justin Powlowski, Adrian Tsang, and René Witte. "Semantic text mining for lignocellulose research." In the ACM fifth international workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2064696.2064705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yuliar, Nursaida Setiyowati, Sri Pujiyanto, and Wijanarka. "Isolation of Brevibacillus sp. B1 from fig stems against post-harvest chilli fungal disease." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ruhimat, Riki, Tirta Kumala Dewi, Tiwit Widowati, Rahayu Fitriani Wangsa Putrie, Nani Mulyani, Entis Sutisna, and Sarjiya Antonius. "Fungal producing lignolytic and cellulolytic enzyme from the various habitat of natural forest in East Kalimantan." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Togatorop, Ester Rimma Suryani, Ria Yolanda Arundina, Prabu Satria Sejati, Sukma Surya Kusumah, and Resti Marlina. "Proximate and structural analysis of activated carbon with different structures from oil palm biomass." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Restasari, Afni, Yeyen Nurhamiyah, Retno Ardianingsih, Luthfia Hajar Abdillah, and Kendra Hartaya. "Preliminary study of effect of palm oil as secondary plasticizer on flow behavior of hydroxyl terminated polybutadiene (HTPB)." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saputra, Suroto Hadi, Andrian Fernandes, and Rizki Maharani. "Effect of combustion method on the yield, specific gravity, and color of oleoresin of Dipterocarpus grandiflorus." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Subyakto, Eko Widodo, Triyati, Naomi Dameria Lidya Andini Hutauruk, Rabiah Al Adawiyah, and Kenji Umemura. "Properties of moulding products from sorghum bagasse combined with alang-alang leaves, sengon wood or bamboo using citric acid-sucrose." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chitraningrum, Nidya, Resti Marlina, Sutistyaningsih, Hana Arisesa, Ismail Budiman, Pamungkas Daud, Ardita Septiani, Ria Yolanda Arundina, and Ester Rimma Suryani Togatorop. "Preparation and characterization of porous carbon-based oil palm empty fruit bunch as a candidate material for an electromagnetic waves absorber application." In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184349.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lignocellulose"

1

O'Malley, Michelle Ann. Engineering Anaerobic Gut Fungi for Lignocellulose Breakdown. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1485149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hancock, William, Charles Anderson, and Ming Tien. Single-molecule imaging of lignocellulose deconstruction by SCATTIRSTORM microscopy. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2335452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Torok, Tamas. Targeted Discovery of Lignocellulose-Deconstructing Enzymes from Extremohilic Fungi. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1462736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dixon, Richard A. Systematic Modification of Monolignol Pathway Gene Expression for Improved Lignocellulose Utilization. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/985404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Murton, Jaclyn K., James Bryce Ricken, and Amy Jo Powell. Efficient breakdown of lignocellulose using mixed-microbe populations for bioethanol production. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/974402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hammel, Kenneth E., John Ralph, Christopher G. Hunt, and Carl J. Houtman. Fungal Biodegradative Oxidants in Lignocellulose: Fluorescence Mapping and Correlation With Gene Expression. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1319808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zerbe, John, and David Nicholls. Lignocellulose to transportation fuels—historical perspectives and status of worldwide facilities in 2010–2011. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2013. http://dx.doi.org/10.2737/pnw-gtr-885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SLACK, JEFFREY, M. IDENTIFICATION, PRODUCTION AND CHARACTERIZATION OF NOVEL LIGNASE PROTEINS FROM TERMITES FOR DEPOLYMERIZATION OF LIGNOCELLULOSE. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1056676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Herring, Christopher D., William R. Kenealy, A. Joe Shaw, Babu Raman, Timothy J. Tschaplinski, Steven D. Brown, Brian H. Davison, et al. Final Report on Development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1033560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dantas, Gautam. Systems Engineering of Rhodococcus opacus to Enable Production of Drop‐in Fuels from Lignocellulose. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1894624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography