Academic literature on the topic 'Lignocellulose bioconversion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lignocellulose bioconversion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lignocellulose bioconversion"

1

Zhang, Baige, Hongzhao Li, Limei Chen, et al. "Recent Advances in the Bioconversion of Waste Straw Biomass with Steam Explosion Technique: A Comprehensive Review." Processes 10, no. 10 (2022): 1959. http://dx.doi.org/10.3390/pr10101959.

Full text
Abstract:
Waste straw biomass is an abundant renewable bioresource raw material on Earth. Its stubborn wooden cellulose structure limits straw lignocellulose bioconversion into value-added products (e.g., biofuel, chemicals, and agricultural products). Compared to physicochemical and other preprocessing techniques, the steam explosion method, as a kind of hydrothermal method, was considered as a practical, eco-friendly, and cost-effective method to overcome the above-mentioned barriers during straw lignocellulose bioconversion. Steam explosion pretreatment of straw lignocellulose can effectively improve
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Kun, Long Jun Xu, and Jun Yi. "Bioconversion of Lignocellulose to Ethanol: A Review of Production Process." Advanced Materials Research 280 (July 2011): 246–49. http://dx.doi.org/10.4028/www.scientific.net/amr.280.246.

Full text
Abstract:
Lignocellulose biomass is a kind of rich reserve in china, and it is a renewable bio-resource. Researches on the bioconversion of lignocellulose (lignocellulosic biomass) to ethanol have been hot spot in recent years. The key technologies of producing fuel alcohol by aspects of lignocellulosic raw materials, pretreatment technology, fermentation process, enzymatic hydrolysis and fermentation of strains as well as the removal of fermentation inhibitors have been reviewed. It is pointed out that the improvement of fermentation strains, exploitation of double function saccharomyces cerevisiae (gl
APA, Harvard, Vancouver, ISO, and other styles
3

Pothiraj, C., P. Kanmani, and P. Balaji. "Bioconversion of Lignocellulose Materials." Mycobiology 34, no. 4 (2006): 159. http://dx.doi.org/10.4489/myco.2006.34.4.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Honarmandrad, Zhila, Karolina Kucharska, and Jacek Gębicki. "Processing of Biomass Prior to Hydrogen Fermentation and Post-Fermentative Broth Management." Molecules 27, no. 21 (2022): 7658. http://dx.doi.org/10.3390/molecules27217658.

Full text
Abstract:
Using bioconversion and simultaneous value-added product generation requires purification of the gaseous and the liquid streams before, during, and after the bioconversion process. The effect of diversified process parameters on the efficiency of biohydrogen generation via biological processes is a broad object of research. Biomass-based raw materials are often applied in investigations regarding biohydrogen generation using dark fermentation and photo fermentation microorganisms. The literature lacks information regarding model mixtures of lignocellulose and starch-based biomass, while the re
APA, Harvard, Vancouver, ISO, and other styles
5

Tomé, Luiz Marcelo Ribeiro, Felipe Ferreira da Silva, Paula Luize Camargos Fonseca, et al. "Hybrid Assembly Improves Genome Quality and Completeness of Trametes villosa CCMB561 and Reveals a Huge Potential for Lignocellulose Breakdown." Journal of Fungi 8, no. 2 (2022): 142. http://dx.doi.org/10.3390/jof8020142.

Full text
Abstract:
Trametes villosa is a wood-decaying fungus with great potential to be used in the bioconversion of agro-industrial residues and to obtain high-value-added products, such as biofuels. Nonetheless, the lack of high-quality genomic data hampers studies investigating genetic mechanisms and metabolic pathways in T. villosa, hindering its application in industry. Herein, applying a hybrid assembly pipeline using short reads (Illumina HiSeq) and long reads (Oxford Nanopore MinION), we obtained a high-quality genome for the T. villosa CCMB561 and investigated its genetic potential for lignocellulose b
APA, Harvard, Vancouver, ISO, and other styles
6

Mathews, Stephanie L., Mary Jane Epps, R. Kevin Blackburn, Michael B. Goshe, Amy M. Grunden, and Robert R. Dunn. "Public questions spur the discovery of new bacterial species associated with lignin bioconversion of industrial waste." Royal Society Open Science 6, no. 3 (2019): 180748. http://dx.doi.org/10.1098/rsos.180748.

Full text
Abstract:
A citizen science project found that the greenhouse camel cricket ( Diestrammena asynamora ) is common in North American homes. Public response was to wonder ‘what good are they anyway?’ and ecology and evolution guided the search for potential benefit. We predicted that camel crickets and similar household species would likely host bacteria with the ability to degrade recalcitrant carbon compounds. Lignocellulose is particularly relevant as it is difficult to degrade yet is an important feedstock for pulp and paper, chemical and biofuel industries. We screened gut bacteria of greenhouse camel
APA, Harvard, Vancouver, ISO, and other styles
7

Jönsson, Leif J., Björn Alriksson, and Nils-Olof Nilvebrant. "Bioconversion of lignocellulose: inhibitors and detoxification." Biotechnology for Biofuels 6, no. 1 (2013): 16. http://dx.doi.org/10.1186/1754-6834-6-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sundstrom, Eric, Junko Yaegashi, Jipeng Yan, et al. "Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels." Green Chemistry 20, no. 12 (2018): 2870–79. http://dx.doi.org/10.1039/c8gc00518d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Luo, Xingxing, Baiquan Zeng, Yanan Zhong, and Jienan Chen. "Production and detoxification of inhibitors during the destruction of lignocellulose spatial structure." BioResources 17, no. 1 (2021): 1939–61. http://dx.doi.org/10.15376/biores.17.1.luo.

Full text
Abstract:
Lignocellulosic biomass is a renewable resource that is widely abundant and can be used to produce biofuels such as methanol and ethanol. Because biofuels have the potential to alleviate shortages of energy in today’s world, they have attracted much research attention. The pretreatment of lignocellulose is an important step in the conversion of biomass products. The pretreatment can destroy the crosslinking effect of lignin and hemicellulose on cellulose, remove lignin, degrade hemicellulose, and change the crystal structure of cellulose. The reaction area between the enzyme and the substrate
APA, Harvard, Vancouver, ISO, and other styles
10

Lucas, Auer, Lazuka Adèle, Sillam-Dussès David, Miambi Edouard, O'Donohue Michael, and Hernandez-Raquet Guillermina. "Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors." Frontiers in Microbiology 8 (December 22, 2017): 2623. https://doi.org/10.3389/fmicb.2017.02623.

Full text
Abstract:
Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesses targeting the production of carboxylates. In this study, gut microbiomes of four termite species were studied for their capacity to degrade wheat straw and produce carboxylates in controlled bioreactor
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lignocellulose bioconversion"

1

Ghizzi, Damasceno da Silva Gabriela. "Fractionnement par voie sèche de la biomasse ligno-cellulosique : broyage poussé de la paille de blé et effets sur ses bioconversions." Thesis, Montpellier, SupAgro, 2011. http://www.theses.fr/2011NSAM0031/document.

Full text
Abstract:
Dans le contexte de la bioraffinerie végétale pour la production de molécules et d'énergie, des prétraitements sont nécessaires pour augmenter la réactivité de la biomasse ligno-cellulosique. Cette thèse s'insère dans une thématique dont l'objectif général est d'établir les bases d'une raffinerie du végétal par des procédés par voie sèche. Cette étude a pour objectif de développer et comprendre le fractionnement mécanique poussé de la paille de blé jusqu'à des tailles sub-millimétriques et d'évaluer les effets sur des procédés de bioconversions énergétiques. La paille de blé présente une grand
APA, Harvard, Vancouver, ISO, and other styles
2

Barron, Niall. "Studies on the bioconversion of cellulosic substrates by the thermotolerant yeast, Kluyveromyces marxianus IMB3 at 45degC." Thesis, University of Ulster, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rojas, Ortúzar Ilse. "Bioconversion Of Lignocellulosic Components Of Sweet Sorghum Bagasse Into Fermentable Sugars." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/555836.

Full text
Abstract:
The utilization of lignocellulosic residues to produce renewable energy is an interesting alternative to meet the increasing demand of fuels while at the same time reducing greenhouse gas emissions and climate change. Sweet sorghum bagasse is a lignocellulosic residue composed mainly of cellulose, hemicellulose, and lignin; and it is a promising substrate for ethanol production because its complex carbohydrates may be hydrolyzed and converted into simple sugars, and then fermented into ethanol. However, the utilization of lignocellulosic residues is difficult and inefficient. Lignocellulose is
APA, Harvard, Vancouver, ISO, and other styles
4

Chang, Chen-Wei. "Bioconversion of sugarcane bagasse and soybean hulls for the production of a generic microbial feedstock." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/bioconversion-of-sugarcane-bagasse-and-soybean-hulls-for-the-production-of-a-generic-microbial-feedstock(0144bdd8-5444-468d-9f0f-50613a79be67).html.

Full text
Abstract:
Lignocellulose, mostly from agricultural and forestry resources, is a potential renewable material for sustainable development of biorefineries. From previous studies, reducing sugar production through biological pretreatment involves two steps: solid-state fermentation (SSF) for delignification, followed by enzymatic hydrolysis by adding celluloytic enzymes (cellulase and xylanase etc.). In the process described in this thesis, the necessary enzymes are produced in-situ and the hydrolysis proceeds directly after the solid-state fermentation. Enzyme hydrolysis releases free amino nitrogen (FAN
APA, Harvard, Vancouver, ISO, and other styles
5

Meyrial, Valérie. "Bioconversion des glucides majeurs dérivés des lignocelluloses en éthanol : relation entre les flux de protons traversant la membrane plasmique et la tolérance à l'éthanol de Pichia stipitis." Lyon 1, 1996. http://www.theses.fr/1996LYO19003.

Full text
Abstract:
Pichia stipitis peut produire de l'ethanol a partir du xylose issu des lignocelluloses. Cependant, cette conversion est limitee par la faible tolerance a l'ethanol de ce type de levures. Aussi, ont ete etudies les mecanismes d'inhibition par l'ethanol, en particulier les flux de protons traversant la membrane plasmique. Les protons traversent la membrane plasmique selon deux directions opposees: entree passive et excretion active. Pour p. Stipitis les vitesses des flux de protons, ainsi que leur alteration en presence d'ethanol, dependent du substrat carbone catabolise. L'influx apparent de pr
APA, Harvard, Vancouver, ISO, and other styles
6

Nguyen, Tien Cuong. "In-situ and ex-situ multi-scale physical metrologies to investigate the destructuration mechanisms of lignocellulosic matrices and release kinetics of fermentescible cellulosic carbon." Thesis, Toulouse, INSA, 2014. http://www.theses.fr/2014ISAT0036/document.

Full text
Abstract:
La bioconversion des biomasses lignocellulosiques est actuellement un grand défi pour le développement de technologies de bio-raffinage. Le manque de connaissances des mécanismes de liquéfaction et de saccharification est l’un des principaux facteurs qui pénalisent le développement des procédés de bio-raffinage. Ce travail est centré sur le développement d’analyses physiques et biochimiques in-situ (viscosimétrie, focus beam reflectance measurement) et ex-situ (rhéometrie, granulométrie laser, morphogranulométrie, sédimentation…) pour améliorer la compréhension des mécanismes de déstructuratio
APA, Harvard, Vancouver, ISO, and other styles
7

Kumi, Philemon James. "Improving the bioconversion of lignocellulosic feedstock to bio-fuels and chemicals." Thesis, University of South Wales, 2015. https://pure.southwales.ac.uk/en/studentthesis/improving-the-bioconversion-of-lignocellulosic-feedstock-to-biofuels-and-chemicals(7088d092-fb93-4d70-ba3d-1abb233e33e3).html.

Full text
Abstract:
This study investigated the fate of lignocellulosic biomass (wheat-feed and perennial rye grass) in different anaerobic digestion systems, evaluating the role of substrate specificity on the pattern of degradation. The two-stage (biohydrogen-biomethane) anaerobic system was found to be more effective in the degradation of lignocellulose, when compared to the conventional single-stage system. The perennial rye grass substrate possessed about 21% higher holocellulose concentration when compared to the wheat-feed; its exploitation in the acidogenic digestion was however poor, resulting in a 2.9%
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Tae Hyun Lee Yoon Y. "Bioconversion of lignocellulosic material into ethanol pretreatment, enzymatic hydrolysis, and ethanol fermentation /." Auburn, Ala., 2004. http://repo.lib.auburn.edu/EtdRoot/2004/FALL/Chemical_Engineering/Dissertation/KIM_TAE_24.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mukhopadhyay, Achira. "Bioconversion of paper mill lignocellulosic materials to lactic acid using cellulase enzyme complex and microbial cultures." Thesis, Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Agu, Chidozie Victor Agu. "Use of process design and metabolic engineering to enhance bioconversion of lignocellulosic biomass and glycerol to biofuels." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480590331055825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Lignocellulose bioconversion"

1

Chandel, Anuj Kumar. Lignocellulose Bioconversion Through White Biotechnology. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chandel, Anuj Kumar, ed. Lignocellulose Bioconversion Through White Biotechnology. Wiley, 2022. http://dx.doi.org/10.1002/9781119735984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chandel, Anuj Kumar. Lignocellulose Bioconversion Through White Biotechnology. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chandel, Anuj Kumar. Lignocellulose Bioconversion Through White Biotechnology. Wiley & Sons, Limited, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chandel, Anuj Kumar. Lignocellulose Bioconversion Through White Biotechnology. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bioconversion of plant raw materials by microorganisms: Finnish-Soviet seminar, Helsinki, 10-12 March, 1987. Technical Research Centre of Finland, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Recent Advances in Bioconversion of Lignocellulose to Biofuels and Value-Added Chemicals within the Biorefinery Concept. Elsevier, 2020. http://dx.doi.org/10.1016/c2018-0-03277-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Filho, Edivaldo Ximenes Ferreira, Leonora Rios de Souza Moreira, Eduardo de Aquino Ximenes, and Cristiane Sanchez Farinas. Recent Advances in Bioconversion of Lignocellulose to Biofuels and Value Added Chemicals Within the Biorefinery Concept. Elsevier, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Filho, Edivaldo Ximenes Ferreira, Leonora Rios de Souza Moreira, Eduardo de Aquino Ximenes, and Cristiane Sanchez Farinas. Recent Advances in Bioconversion of Lignocellulose to Biofuels and Value Added Chemicals Within the Biorefinery Concept. Elsevier, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tsao, G. T. Recent Progress in Bioconversion of Lignocellulosics (Advances in Biochemical Engineering / Biotechnology). Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lignocellulose bioconversion"

1

Nand, Sampurna, Anju Patel, and Siddharth Shukla. "Bioconversion of Lignocellulose." In Nature-Based Wastewater Treatment Systems. CRC Press, 2024. http://dx.doi.org/10.1201/9781003441144-27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carro, Juan, Ana Serrano, Patricia Ferreira, and Angel T. Martínez. "Fungal Aryl-Alcohol Oxidase in Lignocellulose Degradation and Bioconversion." In Biofuel and Biorefinery Technologies. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43679-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goodell, Barry. "15 Fungi Involved in the Biodeterioration and Bioconversion of Lignocellulose Substrates." In Genetics and Biotechnology. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49924-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saxena, Abhishek, Thomas Kiran Marella, Pankaj Kumar Singh, and Archana Tiwari. "New Perspectives in Sustainable Bioconversion of Lignocellulose to Biofuel by Diatoms." In Bioeconomy for Sustainability. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1837-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Xuebing, Feng Qi, and Dehua Liu. "Hierarchy Nano- and Ultrastructure of Lignocellulose and Its Impact on the Bioconversion of Cellulose." In Nanotechnology for Bioenergy and Biofuel Production. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45459-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yadav, Bhoomika, Anusha Atmakuri, Shraddha Chavan, R. D. Tyagi, and Patrick Drogui. "Bioconversion of Lignocellulosic Waste." In Nature-Based Wastewater Treatment Systems. CRC Press, 2024. http://dx.doi.org/10.1201/9781003441144-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chahal, P. S., and D. S. Chahal. "Lignocellulosic wastes: biological conversion." In Bioconversion of Waste Materials to Industrial Products. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5821-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Y. Y., Prashant Iyer, and R. W. Torget. "Dilute-Acid Hydrolysis of Lignocellulosic Biomass." In Recent Progress in Bioconversion of Lignocellulosics. Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-49194-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martins, Manoela, Marcos Fellipe da Silva, Allan Henrique Félix de Mélo, Enylson Xavier Ramalho, and Rosana Goldbeck. "Enzymatic Bioconversion Trends for Lignocellulosic Biorefineries." In Handbook of Biorefinery Research and Technology: Biomass Logistics to Saccharification. Springer Netherlands, 2024. http://dx.doi.org/10.1007/978-94-007-6308-1_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martins, Manoela, Marcos Fellipe da Silva, Allan Henrique Félix de Mélo, Enylson Xavier Ramalho, and Rosana Goldbeck. "Enzymatic Bioconversion Trends for Lignocellulosic Biorefineries." In Handbook of Biorefinery Research and Technology. Springer Netherlands, 2023. http://dx.doi.org/10.1007/978-94-007-6724-9_29-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lignocellulose bioconversion"

1

Saskiawan, Iwan, and Atik Retnowati. "Bioconversion of Lignocellulosic Agriculture Waste to an Edible Mushroom, the Functional Food for Healthy Life During Covid 19." In 6th International Conference of Food, Agriculture, and Natural Resource (IC-FANRES 2021). Atlantis Press, 2022. http://dx.doi.org/10.2991/absr.k.220101.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lignocellulose bioconversion"

1

Zhu, Junyong, Chao Zhang, Roland Gleisner, Carl Houtman, and Xuejun Pan. Bioconversion of woody biomass to biofuel and lignin co-product using sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2016. http://dx.doi.org/10.2737/fpl-gtr-240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!