Academic literature on the topic 'Lignocellulosic biomass'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lignocellulosic biomass.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lignocellulosic biomass"
Wang, Cai, Zhang, Xu, and Yu. "Laboratory Investigation of Lignocellulosic Biomass as Performance Improver for Bituminous Materials." Polymers 11, no. 8 (July 29, 2019): 1253. http://dx.doi.org/10.3390/polym11081253.
Full textDeivy Andhika Permata, Anwar Kasim, Alfi Asben, and Yusniwati. "Delignification of Lignocellulosic Biomass." World Journal of Advanced Research and Reviews 12, no. 2 (November 30, 2021): 462–69. http://dx.doi.org/10.30574/wjarr.2021.12.2.0618.
Full textSaini, Anita, Neeraj K. Aggarwal, Anuja Sharma, and Anita Yadav. "Actinomycetes: A Source of Lignocellulolytic Enzymes." Enzyme Research 2015 (December 17, 2015): 1–15. http://dx.doi.org/10.1155/2015/279381.
Full textChaves, Julie E., Gerald N. Presley, and Joshua K. Michener. "Modular Engineering of Biomass Degradation Pathways." Processes 7, no. 4 (April 23, 2019): 230. http://dx.doi.org/10.3390/pr7040230.
Full textHasanov, Isa, Merlin Raud, and Timo Kikas. "The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass." Energies 13, no. 18 (September 17, 2020): 4864. http://dx.doi.org/10.3390/en13184864.
Full textVintila, Teodor, Vasile Daniel Gherman, Nicolae Popa, Dumitru Popescu, Carmen Buzatu, and Marilena Motoc. "Influence of Enzymatic Cocktails on Conversion of Agricultural Lignocellulose to Fermentable Sugars." Revista de Chimie 68, no. 2 (March 15, 2017): 373–77. http://dx.doi.org/10.37358/rc.17.2.5456.
Full textTaggar, Monica Sachdeva. "Insect cellulolytic enzymes: Novel sources for degradation of lignocellulosic biomass." Journal of Applied and Natural Science 7, no. 2 (December 1, 2015): 625–30. http://dx.doi.org/10.31018/jans.v7i2.656.
Full textChen, Kun, Long Jun Xu, and Jun Yi. "Bioconversion of Lignocellulose to Ethanol: A Review of Production Process." Advanced Materials Research 280 (July 2011): 246–49. http://dx.doi.org/10.4028/www.scientific.net/amr.280.246.
Full textLuo, Xingxing, Baiquan Zeng, Yanan Zhong, and Jienan Chen. "Production and detoxification of inhibitors during the destruction of lignocellulose spatial structure." BioResources 17, no. 1 (December 9, 2021): 1939–61. http://dx.doi.org/10.15376/biores.17.1.luo.
Full textZhang, Yu, Jinshui Yang, Lijin Luo, Entao Wang, Ruonan Wang, Liang Liu, Jiawen Liu, and Hongli Yuan. "Low-Cost Cellulase-Hemicellulase Mixture Secreted by Trichoderma harzianum EM0925 with Complete Saccharification Efficacy of Lignocellulose." International Journal of Molecular Sciences 21, no. 2 (January 7, 2020): 371. http://dx.doi.org/10.3390/ijms21020371.
Full textDissertations / Theses on the topic "Lignocellulosic biomass"
Girisuta, Buana. "Levulinic acid from lignocellulosic biomass." [S.l. : Groningen : s.n. ; University Library Groningen] [Host], 2007. http://irs.ub.rug.nl/ppn/304751316.
Full textBrandt, Agnieszka. "Ionic liquid pretreatment of lignocellulosic biomass." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9166.
Full textSamad, Abdul. "SOPHOROLIPID PRODUCTION FROM LIGNOCELLULOSIC BIOMASS FEEDSTOCKs." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1799.
Full textBorén, Eleonora. "Off-gassing from thermally treated lignocellulosic biomass." Doctoral thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-141921.
Full textCorredor, Deisy Y. "Pretreatment and enzymatic hydrolysis of lignocellulosic biomass." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/693.
Full textHåseth, Jenny Kristin. "Decrystallization of Lignocellulosic Biomass using Ionic Liquids." Thesis, Norges Teknisk-Naturvitenskaplige Universitet, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-21106.
Full textFrazão, Cláudio José Remédios. "Challenges of ethanol production from lignocellulosic biomass." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13657.
Full textThe present work aimed to tackle two of the major challenges in bioethanol production from lignocellulosic feedstocks: (i) high tolerance of microorganisms to lignocellulosic inhibitors, and (ii) microbial contamination avoidance. Lignocellulosic inhibitors are an important fraction of spent sulphite liquor (SSL), a by-product of the pulp and paper industries. Hardwood SSL (HSSL) is rich in pentose sugars, mainly xylose, which can be converted to ethanol by the yeast Scheffersomyces stipitis. In this work, a population of S. stipitis previously adapted to 60 % (v/v) of HSSL was used, and its stability on the absence of inhibitors during ten sequential transfers was investigated at single-clone level. During the screening trials, all the isolated clones showed higher xylose and acetate uptake rates and lower ethanol productivities than the parental strain. The clone exhibiting higher xylose uptake rate (0.558 g L-1 h-1) was named isolate C4. The effect of short-term adaptation on isolate C4 fermentation performance was evaluated by pre-cultivating the clone in the presence or absence of 60 % (v/v) of HSSL. The uptake rates of glucose and xylose were similar under both conditions, but a higher acetate consumption rate (0.101 g L-1 h-1) and maximum ethanol concentration (4.51 g L-1) were achieved without pre-adaptation step, suggesting the robustness of isolate C4. The industrial bioethanol production is mostly carried out under non-sterile conditions, which favours microbial contamination. In this work, the mechanism that triggers Lactobacillus pentosus contamination in SSL plants was investigated. A simulated synthetic hydrolysate mimicking the average composition of sugars and inhibitors of softwood SSL (SSSL) was used and the impact of different factors in bacterial and Saccharomyces cerevisiae viability was analysed. The presence of yeast extract led to an increase in lactate production (9-fold higher) and L. pentosus viability when only bacteria was inoculated. Using different inoculation ratios of yeast/bacteria, the ethanol production rates were not affected after 48 h, and L. pentosus failed to overtake S. cerevisiae. The presence of inhibitors delayed yeast growth, but the bacteria did not outcompete S. cerevisiae. When the pH was optimal to L. pentosus in co-culture experiments, the bacterial cell viability decreased slower. The results indicate that L. pentosus was unable to overtake S. cerevisiae. The presence of yeast extract and favourable pH to bacteria are important factors that can play a role in the mechanism that triggers the bacterial contamination in ethanol plants.
A presente dissertação tem como objetivo abordar dois dos maiores desafios na produção de bioetanol a partir de biomassa lenhocelulósica: (i) elevada tolerância de microrganismos a inibidores, e (ii) prevenção de contaminação microbiana. Os inibidores lenhocelulósicos são uma fração relevante do licor de cozimento ao sulfito ácido (SSL), um subproduto das indústrias do papel e pastas. O SSL de folhosas (HSSL) é rico em pentoses, principalmente xilose, que podem ser fermentadas em etanol pela levedura Scheffersomyces stipitis. Neste estudo, utilizou-se uma população de S. stipitis previamente adaptada a 60 % (v/v) HSSL, e avaliou-se a sua estabilidade na ausência de inibidores durante dez transferências sequenciais. Comparando com a estirpe original, todos os clones isolados exibiram taxas de consumo de xilose e ácido acético superiores e produtividades em etanol inferiores. O clone que demonstrou a maior taxa de consumo de xilose (0,558 g L-1 h-1) foi designado isolado C4, e o efeito de adaptação de curta duração no seu desempenho fermentativo foi investigado através do seu pré-cultivo na presença ou ausência de 60 % (v/v) HSSL. Nas duas condições, as taxas de consumo de glucose e xilose foram idênticas, contudo, atingiu-se maior taxa de consumo de ácido acético (0,101 g L-1 h-1) e maior concentração máxima de etanol (4,51 g L-1) foram atingidas na ausência do processo de adaptação de curta duração. Tais resultados demonstram a robustez do isolado C4. A maioria dos processos de produção industrial de bioetanol é realizada na ausência de esterilidade, favorencendo a contaminação por microrganismos. Neste estudo, investigou-se o mecanismo responsável pela contaminação com Lactobacillus pentosus na indústria de SSL. Para tal, utilizou-se um hidrolisado sintético mimetizando a composição média de açúcares e inibidores de SSL de resinosas (SSSL) e averiguou-se o impacto de vários fatores na viabilidade de L. pentosus e S. cerevisiae. A presença de extrato de levedura foi responsável pelo aumento da produção de ácido lático (9 vezes) e da viabilidade bacteriana quando L. pentosus foi cultivado na ausência de levedura. Diferentes proporções de inóculo de levedura/bactéria não afetaram a produção de etanol após 48 h de fermentação, e L. pentosus foi incapaz de ser a estirpe dominante durante os ensaios de co-cultura. A presença de inibidores retardou o crescimento da levedura, mas a bactéria foi de novo incapaz de se a espécie dominante. Ajustando o valor de pH para o ótimo de L. pentosus nos ensaios de co-cultura, a viabilidade celular da bactéria diminuiu mais lentamente. Os resultados demonstram que L. pentosus não foi a espécie dominante nos ensaios de co-cultura. A presença de extrato de levedura e de valores de pH favoráveis a L. pentosus podem desempenhar um papel importante no mecanismo responsável pela contaminação bacteriana nas indústrias de produção de bioetanol.
Gan, Jing. "Hydrothermal conversion of lignocellulosic biomass to bio-oils." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13768.
Full textDepartment of Biological and Agricultural Engineering
Wenqiao Yuan
Donghai Wang
Corncobs were used as the feedstock to investigate the effect of operating conditions and crude glycerol (solvent) on bio-oil production. The highest bio-oil yield of 33.8% on the basis of biomass dry weight was obtained at 305°C, 20 min retention time, 10% biomass content, 0.5% catalyst loading. At selected conditions, bio-oil yield based on the total weight of corn cobs and crude glycerol increased to 36.3% as the crude glycerol/corn cobs ratio increased to 5. Furthermore, the optimization of operating conditions was conducted via response surface methodology. A maximum bio-oil yield of 41.3% was obtained at 280°C, 12min, 21% biomass content, and 1.56% catalyst loading. A highest bio-oil carbon content of 74.8% was produced at 340°C with 9% biomass content. A maximum carbon recovery of 25.2% was observed at 280°C, 12min, 21% biomass content, and 1.03% catalyst loading. The effect of biomass ecotype and planting location on bio-oil production were studied on big bluestems. Significant differences were found in the yield and elemental composition of bio-oils produced from big bluestem of different ecotypes and/or planting locations. Generally, the IL ecotype and the Carbondale, IL and Manhattan, KS planting locations gave higher bio-oil yield, which can be attributed to the higher total cellulose and hemicellulose content and/or the higher carbon but lower oxygen contents in these feedstocks. Bio-oil from the IL ecotype also had the highest carbon and lowest oxygen contents, which were not affected by the planting location. In order to better understand the mechanisms of hydrothermal conversion, the interaction effects between cellulose, hemicellulose and lignin in hydrothermal conversion were studied. Positive interaction between cellulose and lignin, but negative interaction between cellulose and hemicellulose were observed. No significant interaction was found between hemicelluose and lignin. Hydrothermal conversion of corncobs, big bluestems, switchgrass, cherry, pecan, pine, hazelnut shell, and their model biomass also were conducted. Bio-oil yield increased as real biomass cellulose and hemicellulose content increased, but an opposite trend was observed for low lignin content model biomass.
Lopes, André Miguel da Costa. "Pre-treatment of lignocellulosic biomass with ionic liquids." Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/9521.
Full textO objetivo deste trabalho foi estudar o pré-tratamento de biomassa lignocelulósica, como a palha de trigo, usando líquidos iónicos (LIs) de modo a obter a separação dos principais componentes, nomeadamente, celulose, hemicelulose e lignina. O processo de pré-tratamento foi otimizado com base em duas metodologias descritas na literatura utilizando o líquido iónico acetato de 1-etil-3-metilimidazólio ([emim][CH3COO]). A metodologia otimizada permitiu separar as frações ricas em hidratos de carbono das frações de lignina, ambas com elevada pureza, e com uma recuperação de LIs até um máximo de 97% da sua massa inicial. Desta forma, o LI pode ser reusado confirmando a flexibilidade do processo desenvolvido. A versatilidade do método foi testada com a investigação de três líquidos iónicos diferentes, nomeadamente hidrogenossulfato de 1-butil-3-metilimidazólio ([bmim][HSO4]), tiocianato de 1-butil-3-metilimidazólio ([bmim][SCN]) e dicianamida de 1-butil-3-metilimidazólio ([bmim][N(CN)2]). No processo de dissolução de palha de trigo observou-se uma dissolução completa a nível macroscópico apenas para os líquidos iónicos [emim][CH3COO] e [bmim][HSO4]. O [emim][CH3COO] apresentou maior eficiência no processo de dissolução e regeneração da biomassa. Contrariamente, o [bmim][SCN] demonstrou ser o menos eficiente em todo o processo de pré-tratamento. Um comportamento diferente foi observado para o [bmim][HSO4], cujo pré-tratamento apresentou similaridades a uma hidrólise ácida. Os pré-tratamentos com [bmim][HSO4] e [bmim][N(CN)2] permitiram a obtenção de frações ricas em celulose com um conteúdo em hidratos de carbono de 87 a 90%. Para as frações ricas em celulose provenientes do pré-tratamento com [emim][CH3COO] foram efetuados ensaios de hidrólise enzimática para verificar a potencial aplicação destas frações, bem como, avaliar a eficiência das metodologias de pré-tratamento estudadas. Os resultados obtidos demonstraram elevado índice de digestibilidade da celulose e confirmou o elevado teor de glucose presente na fração celulósica obtida pela metodologia otimizada. A técnica de Espectroscopia de Infravermelho com Transformadas de Fourier (FT-IR) permitiu efetuar análises qualitativas e quantitativas de todas as amostras obtidas nos pré-tratamentos realizados. Para avaliar a pureza dos LIs após os pré-tratamentos utilizou-se a técnica espectroscópica de ressonância magnética nuclear (RMN). Os resultados provenientes dos ensaios de hidrólise enzimática foram obtidos através da técnica cromatográfica de HPLC.
This work is devoted to the pre-treatment of lignocellulosic biomass using ionic liquids (ILs) to separate cellulose, hemicellulose and lignin fractions. Particularly, research was focused on studying the influence of various ILs on the pre-treatment of wheat straw. The pre-treatment procedure was optimised basing on two methodologies presented in the literature. In the optimised method 1-ethyl-3-methylimidazolium acetate ([emim][CH3COO]) IL was used. The developed method is beneficial as allows a separation of highly-purified carbohydrate and lignin-rich samples and permits to recover ILs with a yield of 97wt%. Therefore, the IL could be reused confirming a great flexibility of the developed method. Furthermore, versatility of the method was confirmed by examination of different ILs such as 1-butyl-3-methylimidazolium hydrogensulfate ([bmim][HSO4]), 1-butyl-3-methylimidazolium thiocyanate ([bmim][SCN]) and 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN)2]). Only [emim][CH3COO] and [bmim][HSO4] ILs were found to be capable to achieve a macroscopic complete dissolution of wheat straw. Considering dissolution and regeneration process, [emim][CH3COO] was the most efficient among investigated ILs. On the contrary, [bmim][SCN] demonstrated the lowest efficiency either in dissolution and regeneration or fractionation processes. The [bmim][HSO4] showed different behaviour from other ILs exhibiting similarities to acid hydrolysis pre-treatment. Pre-treatments with [bmim][HSO4] and [bmim][N(CN)2] allowed to recover cellulose rich-samples with a carbohydrate content between 87 to 90wt%. In order to verify the potential further applicability of obtained carbohydrate-rich fractions as well as to evaluate the pre-treatment efficiency, the cellulose-rich fraction obtained from treatment with [emim][CH3COO] was applied for the enzymatic hydrolysis. Achieved results showed a high digestibility of cellulose-rich samples and confirmed a high glucose yield for the optimised methodology. Qualitative and quantitative analyses of the pre-treatment with ILs were made using the Fourier-Transform Infrared Spectroscopy (FT-IR). The NMR analysis was used to evaluate the purity of ILs after pre-treatments. Results of enzymatic hydrolysis analysis were controlled by the HPLC.
Busby, David Preston. "The cost of producing lignocellulosic biomass for ethanol." Master's thesis, Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-07052007-124350.
Full textBooks on the topic "Lignocellulosic biomass"
Boot, Michael, ed. Biofuels from Lignocellulosic Biomass. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527685318.
Full textKubicek, Christian P. Fungi and Lignocellulosic Biomass. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118414514.
Full textKubicek, C. P. Fungi and lignocellulosic biomass. Ames, Iowa: Wiley-Blackwell, 2012.
Find full textSharma, Vinay. Lignocellulosic Biomass Production and Industrial Applications. Edited by Arindam Kuila. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119323686.
Full textBajpai, Pratima. Pretreatment of Lignocellulosic Biomass for Biofuel Production. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0687-6.
Full textBajpai, Pratima. Single Cell Protein Production from Lignocellulosic Biomass. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5873-8.
Full textBioalcohol production: Biochemical conversion of lignocellulosic biomass. Boca Raton: CRC Press, 2010.
Find full textBioalcohol production: Biochemical conversion of lignocellulosic biomass. Boca Raton: CRC Press, 2010.
Find full textBajpai, Pratima. Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4013-1.
Full textBook chapters on the topic "Lignocellulosic biomass"
Rödl, Anne. "Lignocellulosic Biomass." In Biokerosene, 189–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53065-8_9.
Full textGhislain, Thierry, Xavier Duret, Papa Niokhor Diouf, and Jean-Michel Lavoie. "Lignocellulosic Biomass." In Handbook on Characterization of Biomass, Biowaste and Related By-products, 499–535. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35020-8_3.
Full textYu, Fei, and Jonathan Y. Chen. "Lignocellulosic Biomass Processing." In Food and Industrial Bioproducts and Bioprocessing, 293–311. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781119946083.ch12.
Full textTakara, Devin, Prachand Shrestha, and Samir Kumar Khanal. "Lignocellulosic Biomass Pretreatment." In Bioenergy and Biofuel from Biowastes and Biomass, 172–200. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/9780784410899.ch09.
Full textMcCormick, Robert L., Robert M. Baldwin, Stephen Arbogast, Don Bellman, Dave Paynter, and Jim Wykowski. "Biomass Pyrolysis Oils." In Biofuels from Lignocellulosic Biomass, 189–207. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527685318.ch8.
Full textWyman, Charles E., Charles M. Cai, and Rajeev Kumar. "Bioethanol from Lignocellulosic Biomass." In Energy from Organic Materials (Biomass), 997–1022. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7813-7_521.
Full textShafiei, Marzieh, Rajeev Kumar, and Keikhosro Karimi. "Pretreatment of Lignocellulosic Biomass." In Lignocellulose-Based Bioproducts, 85–154. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14033-9_3.
Full textWu, Xiaorong, James McLaren, Ron Madl, and Donghai Wang. "Biofuels from Lignocellulosic Biomass." In Sustainable Biotechnology, 19–41. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3295-9_2.
Full textKim, Tae Hyun. "Pretreatment of Lignocellulosic Biomass." In Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 91–110. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118642047.ch6.
Full textBajpai, Pratima. "Structure of Lignocellulosic Biomass." In SpringerBriefs in Molecular Science, 7–12. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0687-6_2.
Full textConference papers on the topic "Lignocellulosic biomass"
"Comparison of crystallinity index computational methods based on lignocellulose X-ray diffractogram." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-16.
Full textZewei Miao. "Lignocellulosic Biomass Feedstock Supply Logistic Analysis." In 2011 Louisville, Kentucky, August 7 - August 10, 2011. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.37203.
Full textNikolić, Valentina, Slađana Žilić, Danka Milovanović, Beka Sarić, and Marko Vasić. "NOVEL TRENDS IN APPLICATION AND PRETREATMENT OF LIGNOCELLULOSIC AGRICULTURAL WASTE." In 1st International Symposium on Biotechnology. University of Kragujevac, Faculty of Agronomy, 2023. http://dx.doi.org/10.46793/sbt28.271n.
Full textBai, Xuefeng, and Wei Wu. "Pyrolysis of Lignocellulosic Biomass from Northeast China." In 2010 IEEE Green Technologies Conference (IEEE-Green-2010). IEEE, 2010. http://dx.doi.org/10.1109/green.2010.5453776.
Full textWeitao Zhang, Minliang Yang, and Kurt A. Rosentrater. "Pretreatment Methods for Lignocellulosic Biomass to Ethanol." In 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131594712.
Full textKingsley L. Iroba, Lope G. Tabil, Meda Venkatesh, and Baik Oon-Doo. "Thermal properties of lignocellulosic biomass barley straw." In 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131594972.
Full textMei, Danhua, Shiyun Liu, Sen Wang, and Zhi Fang. "Plasma-Enabled Fast Liquefaction of Lignocellulosic Biomass: Impact of Biomass Feedstocks." In 2020 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2020. http://dx.doi.org/10.1109/icops37625.2020.9717951.
Full textPatrick T Murphy, Kenneth J Moore, and D Raj Raman. "Carbohydrate Availability Assay for Determining Lignocellulosic Biomass Quality." In 2007 Minneapolis, Minnesota, June 17-20, 2007. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.23442.
Full textSousa, Laura, Fábio Lisboa, and Geraldo Tiago Filho. "Energetic characterization of lignocellulosic biomass: macauba (Acrocomia aculeata)." In 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-1111.
Full textBurra, Kiran Raj Goud, and Ashwani K. Gupta. "Versatile Model Selection for Pyrolysis of Lignocellulosic-Biomass Components." In AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-4158.
Full textReports on the topic "Lignocellulosic biomass"
McMillan, J. D. Processes for pretreating lignocellulosic biomass: A review. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/7171656.
Full textMcMillan, J. D. Processes for pretreating lignocellulosic biomass: A review. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10104508.
Full textGuffey, F. D., and R. C. Wingerson. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/807155.
Full textBinder, Thomas, Michael Erpelding, Josef Schmid, Andrew Chin, Rhea Sammons, and Erin Rockafellow. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1253922.
Full textJarnigan, Alisha. Enhancing Cellulase Commercial Performance for the Lignocellulosic Biomass Industry. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1255837.
Full textKumar, Manoj. Development of a commercial enzymes system for lignocellulosic biomass saccharification. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1068167.
Full textHuber, George W., and Jiayue He. Catalytic Processes for Production of α,ω-diols from Lignocellulosic Biomass. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1480118.
Full textDutta, A., M. Talmadge, J. Hensley, M. Worley, D. Dudgeon, D. Barton, P. Groenendijk, et al. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol. Office of Scientific and Technical Information (OSTI), May 2011. http://dx.doi.org/10.2172/1219435.
Full textPhillips, S., A. Aden, J. Jechura, D. Dayton, and T. Eggeman. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/902168.
Full textPhillips, S., A. Aden, J. Jechura, D. Dayton, and T. Eggeman. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/1216397.
Full text